The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A243862 Number of length n sequences on alphabet {0,1,2} that contain all of 00, 01, 02, 10, 11, 12, 20, 21, 22 as (possibly overlapping) contiguous subsequences. 2
 216, 2160, 14544, 78840, 374568, 1623420, 6580848, 25350384, 93835368, 336429336, 1175333232, 4019312448, 13502627088, 44688347724, 146041135932, 472142876544, 1512373800624, 4806068123880, 15168176407512, 47586553527408, 148517566558116, 461424138047280 (list; graph; refs; listen; history; text; internal format)
 OFFSET 10,1 COMMENTS The expected wait time (average number of digits necessary) to see all 9 of the 2 bit strings is 18850259/711620 (approximately 26.4892). LINKS Alois P. Heinz, Table of n, a(n) for n = 10..1000 FORMULA G.f.: 12 *x^10 *(4*x^31 -29*x^30 +4*x^29 +137*x^28 -47*x^27 -414*x^26 +1491*x^25 +338*x^24 -6524*x^23 +1928*x^22 +7881*x^21 -4257*x^20 +7086*x^19 -2814*x^18 -28437*x^17 +30193*x^16 +18744*x^15 -47298*x^14 +17738*x^13 +13339*x^12 -14197*x^11 +18725*x^10 -17810*x^9 -13496*x^8 +35794*x^7 -19124*x^6 -6133*x^5 +12494*x^4 -6834*x^3 +1932*x^2 -288*x +18) / ((x-1) *(3*x-1) *(2*x-1) *(x+1) *(2*x^2-1) *(x^2+2*x-1) *(x^2+x-1) *(x^2-3*x+1) *(x^3+x^2+x-1) *(x^3-x^2-2*x+1) *(x^3-2*x^2-x+1) *(x^3+2*x-1) *(x^3-x^2+2*x-1) *(x^3+x^2-1) *(2*x^2+2*x-1) *(x^3+x-1) *(x^3+2*x^2+x-1) *(x^3-2*x^2+3*x-1)). - Alois P. Heinz, Jun 13 2014 MAPLE b:= proc(n, t, s) option remember; `if`(s={}, 3^n, `if`(nops(s)>n, 0, add(b(n-1, j, s minus {3*t+j}), j=0..2))) end: a:= n-> 3*b(n-1, 0, {\$0..8}): seq(a(n), n=10..40); # Alois P. Heinz, Jun 13 2014 MATHEMATICA sol = Solve[{a == va(z^2 + z a + z d + z g), b == vb(z^2 + z a + z d + z g), c == vc (z^2 + z a + z d + z g), d == vd(z^2 + z b + z e + z h), e == ve(z^2 + z b + z e + z h), f == vf(z^2 + z b + z e + z h), g == vg(z^2 + z c + z f + z i), h == vh(z^2 + z c + z f + z i), i == vi(z^2 + z c + z f + z i)}, {a, b, c, d, e, f, g, h, i}]; vsub = {va -> ua - 1, vb -> ub - 1, vc -> uc - 1, vd -> ud - 1, ve -> ue - 1, vf -> uf - 1, vg -> ug - 1, vh -> uh - 1, vi -> ui - 1}; S = 1/(1 - 3z - a - b - c - d - e - f - g - h - i); Fz[ua_, ub_, uc_, ud_, ue_, uf_, ug_, uh_, ui_] = S/.sol/.vsub; tn = Table[Total[Map[Apply[Fz, #] &, Select[Tuples[{0, 1}, 9], Count[#, 0] == n &]]], {n, 1, 9}]; Drop[Flatten[CoefficientList[Series[1/(1 - 3z) - (Simplify[tn[[1]] - tn[[2]] + tn[[3]] - tn[[4]] + tn[[5]] - tn[[6]] + tn[[7]] - tn[[8]]] + tn[[9]]), {z, 0, 40}], z]], 10] CROSSREFS Cf. A242206, A242167, A242257, A242323. Sequence in context: A370693 A323801 A222694 * A223559 A017055 A299859 Adjacent sequences: A243859 A243860 A243861 * A243863 A243864 A243865 KEYWORD nonn AUTHOR Geoffrey Critzer, Jun 12 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 00:29 EDT 2024. Contains 372921 sequences. (Running on oeis4.)