login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242167
Number of length n binary words that contain 000 and 001 and 010 and 011 and 100 and 101 and 110 and 111 as contiguous subsequences. The 3 letter subsequences are allowed to overlap.
6
16, 80, 298, 934, 2632, 6890, 17118, 40908, 94884, 214956, 477922, 1046544, 2263228, 4843834, 10277132, 21645226, 45303842, 94314954, 195443594, 403391590, 829703588, 1701379556, 3479560910, 7099569872, 14455857024, 29380784736, 59618421994, 120801765892
OFFSET
10,1
COMMENTS
The expected wait time to see all eight 3 bit strings is 89259/3640 (approximately 24.5).
LINKS
Eric Weisstein's World of Mathematics, Coin Tossing
Index entries for linear recurrences with constant coefficients, signature (10, -41, 89, -114, 99, -58, -30, 120, -121, 109, -97, 20, -20, 37, 33, -17, 20, -66, 9, -9, 21, 21, -3, 0, -11, -2, -1, 1, 2).
FORMULA
G.f.: -2*x^10 *(2*x^23 +5*x^22 +9*x^21 +12*x^20 +14*x^19 -13*x^17 -19*x^16 -41*x^15 -6*x^14 -18*x^13 +33*x^12 +32*x^11 -6*x^10 +91*x^9 -111*x^8 +32*x^7 -8*x^6 -61*x^5 +107*x^4 -95*x^3 +77*x^2 -40*x +8) / ((2*x-1) *(x+1) *(x^2+1) *(x^2+x-1) *(x^3-x^2+2*x-1) *(x^3+x^2-1) *(x^3+x^2+x-1) *(x^4+x-1) *(x^4+x^3-1) *(x^3+x-1) *(x-1)^3). - Alois P. Heinz, May 07 2014
EXAMPLE
a(10) = 16 because we have: 0001011100, 0001110100, 0010111000, 0011101000, 0100011101, 0101110001, 0111000101, 0111010001, 1000101110, 1000111010, 1010001110, 1011100010, 1100010111, 1101000111, 1110001011, 1110100011.
MATHEMATICA
(* about 5 minutes of run time required *)
s=Tuples[{T, H}, 3];
t=Table[Total[Table[Total[z^Flatten[Position[Table[Take[s[[n]], 3-i]===Drop[s[[m]], i], {i, 0, 2}], True]-1]], {m, 1, 8}]*{a, b, c, d, e, f, g, h}], {n, 1, 8}];
sol=Solve[{a==va(z^3+t[[1]]-a), b==vb(z^3+t[[2]]-b), c==vc(z^3+t[[3]]-c), d==vd(z^3+t[[4]]-d), e==ve(z^3+t[[5]]-e), f==vf(z^3+t[[6]]-f), g==vg(z^3+t[[7]]-g), h==vh(z^3+t[[8]]-h)}, {a, b, c, d, e, f, g, h}];
S=1/(1-2z-a-b-c-d-e-f-g-h);
vsub={va->ua-1, vb->ub-1, vc->uc-1, vd->ud-1, ve->ue-1, vf->uf-1, vg->ug-1, vh->uh-1};
Fz[ua_, ub_, uc_, ud_, ue_, uf_, ug_, uh_]=Simplify[S/.sol/.vsub];
tn=Table[Total[Map[Apply[Fz, #]&, Select[Tuples[{0, 1}, 8], Count[#, 0]==n&]]], {n, 1, 8}];
Drop[Flatten[CoefficientList[Series[1/(1-2z)-Simplify[tn[[1]] -tn[[2]] +tn[[3]]-tn[[4]]+tn[[5]]-tn[[6]]+tn[[7]]-tn[[8]]], {z, 0, 40}], z]], 10]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Edward Williams and Geoffrey Critzer, May 05 2014
STATUS
approved