

A242165


Smallest k>=0, such that n+/k are both FermiDirac primes (A050376).


2



0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 3, 2, 0, 0, 1, 0, 3, 2, 3, 0, 1, 0, 3, 2, 3, 0, 1, 0, 9, 4, 3, 6, 5, 0, 9, 2, 3, 0, 1, 0, 3, 2, 3, 0, 1, 0, 3, 2, 9, 0, 5, 6, 3, 4, 9, 0, 1, 0, 9, 4, 3, 6, 5, 0, 15, 2, 3, 0, 1, 0, 7, 4, 3, 4, 5, 0, 1, 0, 1, 0, 5, 4, 3, 14, 9, 0, 7, 10, 9, 4, 13, 6, 7, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,13


COMMENTS

The existence of a(n)>=0 for all n >= 2 is equivalent to the Goldbach conjecture in FermiDirac arithmetic (cf. comment in A241927) that every even number >= 4 is a sum of two terms of A050376 (it is slightly weaker than Goldbach conjecture for primes).


REFERENCES

V. S. Shevelev, Multiplicative functions in the FermiDirac arithmetic, Izvestia Vuzov of the NorthCaucasus region, Nature sciences 4 (1996), 2843 (in Russian; MR 2000f: 11097, pp. 39123913).


LINKS

Peter J. C. Moses, Table of n, a(n) for n = 2..10001


FORMULA

a(A050376(n)) = 0.


CROSSREFS

Cf. A082467, A241922, A241927, A241947.
Sequence in context: A206825 A336551 A292380 * A231724 A214851 A245203
Adjacent sequences: A242162 A242163 A242164 * A242166 A242167 A242168


KEYWORD

nonn


AUTHOR

Vladimir Shevelev, May 05 2014


STATUS

approved



