login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242206 Number of length n binary words which contain 00 and 01 and 10 and 11 as (possibly overlapping) contiguous subsequences. 5
4, 18, 54, 138, 324, 724, 1568, 3326, 6954, 14390, 29552, 60344, 122684, 248586, 502366, 1013122, 2039804, 4101532, 8238520, 16534390, 33161554, 66473198, 133189224, 266771328, 534178324, 1069385154, 2140434438, 4283561466, 8571479604, 17150008420, 34311422672 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,1

COMMENTS

The expected wait time to see all four substrings is 19/2.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 5..1000

Eric Weisstein's World of Mathematics, Coin Tossing

FORMULA

G.f.: -2*x^5*(-2+x+2*x^2)/((2*x-1)*(x^2+x-1)*(x-1)^2). - Alois P. Heinz, May 07 2014

EXAMPLE

a(5) = 4 because we have: 00110, 01100, 10011, 11001.

MATHEMATICA

sol=Solve[{A==va (z^2+z A+z C), B==vb (z^2+z A+z C), C==vc (z^2+z B+z D), D==vd (z^2+z B+z D)}, {A, B, C, D}];

S=1/(1-2 z-A-B-C-D);

vsub={va->ua-1, vb->ub-1, vc->uc-1, vd->ud-1};

Fz[z_, ua_, ub_, uc_, ud_]=Simplify[S/.sol/.vsub];

G[z_]=Simplify[Fz[z, 1, 1, 1, 0]+Fz[z, 0, 1, 1, 1]+Fz[z, 1, 0, 1, 1] +Fz[z, 1, 1, 0, 1] -Fz[z, 1, 1, 0, 0] -Fz[z, 1, 0, 1, 0]-Fz[z, 1, 0, 0, 1]-Fz[z, 0, 1, 1, 0] -Fz[z, 0, 1, 0, 1] -Fz[z, 0, 0, 1, 1]+Fz[z, 1, 0, 0, 0]+Fz[z, 0, 1, 0, 0] +Fz[z, 0, 0, 1, 0] +Fz[z, 0, 0, 0, 1] -Fz[z, 0, 0, 0, 0]];

Drop[Flatten[CoefficientList[Series[1/(1-2z)-G[z], {z, 0, 40}], z]], 5]

CoefficientList[Series[-2x^5(-2+x+2x^2)/((2x-1)(x^2+x-1)(x-1)^2), {x, 0, 50}], x] (* Harvey P. Dale, May 30 2018 *)

CROSSREFS

Cf. A242167, A242257, A242323.

Sequence in context: A182031 A212250 A229788 * A181411 A238915 A212680

Adjacent sequences:  A242203 A242204 A242205 * A242207 A242208 A242209

KEYWORD

nonn

AUTHOR

Edward Williams and Geoffrey Critzer, May 07 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 09:32 EST 2019. Contains 329862 sequences. (Running on oeis4.)