login
A247817
Sum(4^k, k=2..n).
4
0, 16, 80, 336, 1360, 5456, 21840, 87376, 349520, 1398096, 5592400, 22369616, 89478480, 357913936, 1431655760, 5726623056, 22906492240, 91625968976, 366503875920, 1466015503696, 5864062014800, 23456248059216, 93824992236880, 375299968947536, 1501199875790160
OFFSET
1,2
FORMULA
G.f.: 16*x^2/((1-x)*(1-4*x)).
a(n) = a(n-1) + 4^n = (4^(n+1) - 16)/3 = 5*a(n-1) - 4*a(n-2).
a(n) = A080674(n) - 4. - Michel Marcus, Sep 25 2014
MATHEMATICA
RecurrenceTable[{a[1] == 0, a[n] == a[n-1] + 4^n}, a, {n, 30}] (* or *) CoefficientList[ Series[16 x / ((1 - x) (1 - 4 x)), {x, 0, 40}], x]
LinearRecurrence[{5, -4}, {0, 16}, 30] (* Harvey P. Dale, Feb 19 2023 *)
PROG
(Magma) [0] cat [&+[4^k: k in [2..n]]: n in [2..30]]; /* or */ [(4^(n+1)-16)/3: n in [1..30]];
(PARI) a(n) = sum(k=2, n, 4^k); \\ Michel Marcus, Sep 25 2014
CROSSREFS
Cf. Sum(h^k,k=2..n): A028329 (h=2), A168569 (h=3), this sequence (h=4), A168571 (h=5), A247840 (h=6), A168572 (h=7), A247841 (h=8), A247842 (h=9), A124166 (h=10).
Sequence in context: A050468 A242167 A068778 * A034570 A165963 A221910
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Sep 25 2014
STATUS
approved