login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247840
Sum(6^k, k=2..n).
2
0, 36, 252, 1548, 9324, 55980, 335916, 2015532, 12093228, 72559404, 435356460, 2612138796, 15672832812, 94036996908, 564221981484, 3385331888940, 20311991333676, 121871948002092, 731231688012588, 4387390128075564, 26324340768453420
OFFSET
1,2
FORMULA
G.f.: 36*x^2/((1-x)*(1-6*x)).
a(n) = a(n-1) + 6^n = (6^(n+1) - 36)/5 = 7*a(n-1) - 6*a(n-2).
a(n) = A105281(n) - 6. - Michel Marcus, Sep 25 2014
MATHEMATICA
RecurrenceTable[{a[1] == 0, a[n] == a[n-1] + 6^n}, a, {n, 30}] (* or *) CoefficientList[Series[36 x / ((1 - x) (1 - 6 x)), {x, 0, 30}], x]
Join[{0}, Accumulate[6^Range[2, 30]]] (* or *) LinearRecurrence[{7, -6}, {0, 36}, 30] (* Harvey P. Dale, Jun 11 2016 *)
PROG
(Magma) [0] cat [&+[6^k: k in [2..n]]: n in [2..30]]; /* or */ [(6^(n+1)-36)/5: n in [1..30]];
(PARI) a(n) = sum(k=2, n, 6^k); \\ Michel Marcus, Sep 25 2014
CROSSREFS
Cf. similar sequences listed in A247817.
Sequence in context: A233363 A030165 A282099 * A017342 A341544 A115332
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Sep 25 2014
STATUS
approved