login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247838
Numbers n such that sigma(sigma(n)) is prime.
4
3, 2667, 3937, 57337, 172011, 253921, 677207307, 1073602561, 732959441001382539, 750688035198863979, 1000923107604038521, 1108158528150703969
OFFSET
1,1
COMMENTS
Numbers n such that A051027(n) is a prime p.
Prime 3 is the only prime p such that sigma(sigma(p)) is a prime q.
Conjecture: Subsequence of A046528 (numbers that are a product of distinct Mersenne primes).
Corresponding values of primes p: 7, 8191, 8191, 131071, 524287, 524287, ... (A247822). Conjecture: values of primes p is equal to Mersenne primes (A000668).
732959441001382539, 750688035198863979, 1000923107604038521, 1108158528150703969 and 196751176038481899983340171 are terms. - Jaroslav Krizek, Mar 25 2015
a(9) > 10^10. - Michel Marcus, Feb 13 2020
a(13) > 10^19. - Giovanni Resta, Feb 14 2020
FORMULA
a(n) = 2*A247821(n)-1.
EXAMPLE
2667 is a term because sigma(sigma(2667)) = sigma(4096) = 8191 (i.e., prime).
MAPLE
with(numtheory): A247838:=n->`if`(isprime(sigma(sigma(n))), n, NULL): seq(A247838(n), n=1..10^5); # Wesley Ivan Hurt, Oct 02 2014
MATHEMATICA
Select[Range[260000], PrimeQ[DivisorSigma[1, DivisorSigma[1, #]]]&] (* The program generates the first six terms of the sequence. *) (* Harvey P. Dale, Jan 18 2024 *)
PROG
(Magma) [n: n in [1..10000000] | IsPrime(SumOfDivisors(SumOfDivisors(n)))]
(PARI) isok(n) = isprime(sigma(sigma(n))); \\ Michel Marcus, Oct 01 2014
KEYWORD
nonn,more
AUTHOR
Jaroslav Krizek, Sep 28 2014
EXTENSIONS
a(7)-a(8) from Michel Marcus, Oct 02 2014
a(9)-a(12) from Giovanni Resta, Feb 14 2020
STATUS
approved