login
A063103
Numbers n such that sigma(usigma(n)) is prime.
3
3, 8, 2667, 3937, 57337, 172011, 253921, 677207307, 1073602561, 732959441001382539, 750688035198863979, 1000923107604038521, 1108158528150703969
OFFSET
1,1
EXAMPLE
n=8: usigma(8) = 9 and sigma(9) = 13, a prime.
n=2667: usigma(2667) = 4096 and sigma(4096) = 8191, a prime.
MATHEMATICA
us[n_Integer] := (d = Divisors[n]; l = Length[d]; k = 1; s = n; While[k < l, If[ GCD[ d[[k]], n/d[[k]] ] == 1, s = s + d[[k]]]; k++ ]; s); Do[m = n; If[ PrimeQ[ DivisorSigma[1, us[n]]], Print[n]], {n, 1, 10^7} ]
PROG
(PARI) u(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)); for(n=1, 10^7, if(isprime(sigma(u(n))), print(n)))
(Magma) us:=func<n|&+[d:d in Divisors(n)| Gcd(d, n div d) eq 1]>; [k:k in [1..10^6]| IsPrime(DivisorSigma(1, us(k)))]; // Marius A. Burtea, Feb 13 2020
CROSSREFS
Sequence in context: A268141 A354119 A278974 * A058847 A088110 A122759
KEYWORD
nonn,more
AUTHOR
Jason Earls, Aug 07 2001
EXTENSIONS
a(8)-a(9) from Donovan Johnson, Jul 16 2012
a(10)-a(13) from Manuel Valdivia, Sep 28 2012
STATUS
approved