login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282099
Coefficients in q-expansion of (E_2^2*E_4 - 2*E_2*E_6 + E_4^2)/1728, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.
7
0, 1, 36, 252, 1168, 3150, 9072, 16856, 37440, 61317, 113400, 161172, 294336, 371462, 606816, 793800, 1198336, 1420146, 2207412, 2476460, 3679200, 4247712, 5802192, 6436872, 9434880, 9844375, 13372632, 14900760, 19687808, 20511990, 28576800, 28630112, 38347776
OFFSET
0,3
COMMENTS
Multiplicative because A001158 is. - Andrew Howroyd, Jul 25 2018
LINKS
FORMULA
G.f.: phi_{5, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (A282208(n) - 2*A282096(n) + A008410(n))/1728. - Seiichi Manyama, Feb 19 2017
a(n) = n^2*A001158(n) for n > 0. - Seiichi Manyama, Feb 19 2017
Sum_{k=1..n} a(k) ~ Pi^4 * n^6 / 540. - Vaclav Kotesovec, May 09 2022
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^(2*e) * (p^(3*e+3)-1)/(p^3-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-5). (End)
EXAMPLE
a(6) = 1^5*6^2 + 2^5*3^2 + 3^5*2^2 + 6^5*1^2 = 9072.
MATHEMATICA
a[0]=0; a[n_]:=(n^2)*DivisorSigma[3, n]; Table[a[n], {n, 0, 32}] (* Indranil Ghosh, Feb 21 2017 *)
PROG
(PARI) a(n) = if (n==0, 0, n^2*sigma(n, 3)); \\ Michel Marcus, Feb 21 2017
CROSSREFS
Cf. A282097 (phi_{3, 2}), this sequence (phi_{5, 2}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A282208 (E_2^2*E_4), A282096 (E_2*E_6), A008410 (E_8 = E_4^2).
Cf. A001158 (sigma_3(n)), A281372 (n*sigma_3(n)), this sequence (n^2*sigma_3(n)), A282213 (n^3*sigma_3(n)).
Sequence in context: A219888 A233363 A030165 * A247840 A017342 A341544
KEYWORD
nonn,easy,mult
AUTHOR
Seiichi Manyama, Feb 06 2017
STATUS
approved