login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028329 Twice central binomial coefficients. 15
2, 4, 12, 40, 140, 504, 1848, 6864, 25740, 97240, 369512, 1410864, 5408312, 20801200, 80233200, 310235040, 1202160780, 4667212440, 18150270600, 70690527600, 275693057640, 1076515748880, 4208197927440, 16466861455200 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Central elements in the even-Pascal triangle A028326.

If Y is a 3-subset of an 2n-set X then, for n>=3, a(n-1) is the number of (n+1)-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007

a(n) denotes the number of ways one can reach the (n,n) point in an n X n grid via the point (n-1, n-1) starting from (0,0) when moving right and up is allowed [From Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 29 2009]

It appears that a(n-1) is also the number of quivers in the mutation class of twisted types BD_n and CD_n for n>=3. - Christian Stump, Nov 03 2010

This is the case m = n+1 in the Catalan's formula (2m)!*(2n)!/(m!*(m+n)!*n!) - see Umberto Scarpis in References. - Bruno Berselli, Apr 27 2012

a(n) is the number of North-East paths from (0,0) to (n+1,n+1) that bounce off the diagonal y = x an even number of times. Details can be found in Section 4.2 in Pan and Remmel's link. - Ran Pan, Feb 01 2016

a(n) is the number of North-East paths from (0,0) to (n+1,n+1) that cross the diagonal y = x an even number of times. Details can be found in Section 4.3 in Pan and Remmel's link. - Ran Pan, Feb 01 2016

REFERENCES

Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third Edition), page 11.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300

Guo-Niu Han, Enumeration of Standard Puzzles

Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]

Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016

FORMULA

G.f.: 2/sqrt(1-4*x).

a(n) = 2 * binomial(2*n, n).

a(n) = A100320(n) = A095660(2*n,n) for n > 0. - Reinhard Zumkeller, Apr 08 2012

G.f.: G(0), where G(k)= 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) + (k+1)/ G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013

a(n) = binomial(2*n+2,n+1) - A162551(n). - Ran Pan, Feb 01 2016

MAPLE

seq(add(binomial(2*n, n), k=1..2), n=0..23); # Zerinvary Lajos, Dec 14 2007

MATHEMATICA

Table[2Binomial[2n, n], {n, 0, 30}] (* Harvey P. Dale, Aug 08 2011 *)

PROG

(PARI) a(n)=2*binomial(2*n, n)

CROSSREFS

a(n)=2*A000984(n).

Bisection of A047073, A063886. First differences of A054113.

Cf. A162551.

Sequence in context: A113179 A214761 A056236 * A204678 A025227 A211965

Adjacent sequences:  A028326 A028327 A028328 * A028330 A028331 A028332

KEYWORD

nonn,easy

AUTHOR

Mohammad K. Azarian

EXTENSIONS

More terms from James A. Sellers

Edited by Michael Somos, Sep 13 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 26 06:54 EDT 2017. Contains 292502 sequences.