login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300652
Number of enriched p-trees of weight 2n + 1 in which all outdegrees and all leaves are odd.
3
1, 2, 4, 12, 40, 136, 496, 1952, 7488, 30368, 123456, 512384, 2129664, 9068672, 38391552, 165642752, 713405952, 3109135872, 13528865792, 59591322624, 261549260800, 1159547047936, 5131968999424, 22883893137408, 101851069587456, 456703499042816, 2042949493276672
OFFSET
0,2
COMMENTS
An enriched p-tree of weight n > 0 is either a single node of weight n, or a finite sequence of at least two enriched p-trees whose weights are weakly decreasing and sum to n.
LINKS
FORMULA
a(n) = (1 - (-1)^n)/2 + Sum_y Product_{i in y} a(i) where the sum is over all non-singleton integer partitions of n with an odd number of parts.
EXAMPLE
The a(3) = 12 trees:
7,
(511), (331),
((111)31), (3(111)1), ((311)11), (31111),
((111)(111)1), (((111)11)11), ((11111)11), ((111)1111), (1111111).
MATHEMATICA
r[n_]:=r[n]=If[OddQ[n], 1, 0]+Sum[Times@@r/@y, {y, Select[IntegerPartitions[n], Length[#]>1&&OddQ[Length[#]]&]}];
Table[r[n], {n, 1, 40, 2}]
PROG
(PARI) seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^(2*k-1) + O(x^(2*n))) - 1/prod(k=1, n-1, 1 + v[k]*x^(2*k-1) + O(x^(2*n))), 2*n-1)/2); v} \\ Andrew Howroyd, Aug 26 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 10 2018
STATUS
approved