login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300439
Number of odd enriched p-trees of weight n (all outdegrees are odd).
12
1, 1, 2, 2, 5, 7, 18, 29, 75, 132, 332, 651, 1580, 3268, 7961, 16966, 40709, 89851, 215461, 484064, 1159568, 2641812, 6337448, 14622880, 35051341, 81609747, 196326305, 459909847, 1107083238, 2611592457, 6299122736, 14926657167, 36069213786, 85809507332
OFFSET
1,3
COMMENTS
An odd enriched p-tree of weight n > 0 is either a single node of weight n, or a finite odd-length sequence of at least 3 odd enriched p-trees whose weights are weakly decreasing and sum to n.
LINKS
EXAMPLE
The a(6) = 7 odd enriched p-trees: 6, (411), (321), (222), ((111)21), ((211)11), (21111).
MATHEMATICA
f[n_]:=f[n]=1+Sum[Times@@f/@y, {y, Select[IntegerPartitions[n], Length[#]>1&&OddQ[Length[#]]&]}];
Array[f, 40]
PROG
(PARI) seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x*x^n)) - 1/prod(k=1, n-1, 1 + v[k]*x^k + O(x*x^n)), n)/2); v} \\ Andrew Howroyd, Aug 26 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 05 2018
STATUS
approved