login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294079
Strict Moebius function of the multiorder of integer partitions indexed by Heinz numbers.
5
0, 1, 1, 0, 1, -1, 1, 0, 0, -1, 1, 1, 1, -1, -1, 0, 1, 1, 1, 1, -1, -1, 1, -1, 0, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 1, -1, -1, -1, 1, 2, 1, 1, 1, -1, 1, 1, 0, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -3, 1, -1, 1, 0, -1, 2, 1, 1, -1, 1, 1, 2, 1, -1, 1, 1, -1, 2, 1, 1, 0, -1, 1, -2, -1, -1, -1, -1, 1, -3, -1
OFFSET
1,42
COMMENTS
By convention a(1) = 0.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
FORMULA
mu(y) = Sum_{g(t)=y} (-1)^d(t), where the sum is over all strict trees (A273873) whose multiset of leaves is the integer partition y, and d(t) is the number of non-leaf nodes in t.
MATHEMATICA
nn=120;
ptns=Table[If[n===1, {}, Join@@Cases[FactorInteger[n]//Reverse, {p_, k_}:>Table[PrimePi[p], {k}]]], {n, nn}];
tris=Join@@Map[Tuples[IntegerPartitions/@#]&, ptns];
qmu[y_]:=qmu[y]=If[Length[y]===1, 1, -Sum[Times@@qmu/@t, {t, Select[tris, And[Length[#]>1, Sort[Join@@#, Greater]===y, UnsameQ@@#]&]}]];
qmu/@ptns
KEYWORD
sign
AUTHOR
Gus Wiseman, Feb 07 2018
STATUS
approved