OFFSET
1,9
COMMENTS
The largest exponent among the exponents of the odd primes in the prime factorization of n.
LINKS
FORMULA
a(n) = 0 if and only if n is a power of 2 (A000079).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} k * d(k) = 1.25979668632898014495... , where d(k) is the asymptotic density of the occurrences of k in this sequence: d(1) = 4/(3*zeta(2)), and d(k) = (1/zeta(k+1)) / (1-1/2^(k+1)) - (1/zeta(k)) / (1-1/2^k) for k >= 2.
MATHEMATICA
a[n_] := Module[{o = n / 2^IntegerExponent[n, 2]}, If[o == 1, 0, Max[FactorInteger[o][[;; , 2]]]]]; Array[a, 100]
PROG
(PARI) a(n) = {my(o = n >> valuation(n, 2)); if(o == 1, 0, vecmax(factor(o)[, 2])); }
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Aug 23 2024
STATUS
approved