login
The maximum exponent in the prime factorization of the largest odd divisor of n.
3

%I #7 Aug 23 2024 10:43:23

%S 0,0,1,0,1,1,1,0,2,1,1,1,1,1,1,0,1,2,1,1,1,1,1,1,2,1,3,1,1,1,1,0,1,1,

%T 1,2,1,1,1,1,1,1,1,1,2,1,1,1,2,2,1,1,1,3,1,1,1,1,1,1,1,1,2,0,1,1,1,1,

%U 1,1,1,2,1,1,2,1,1,1,1,1,4,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,2,2,1,1,1,1,1

%N The maximum exponent in the prime factorization of the largest odd divisor of n.

%C The largest exponent among the exponents of the odd primes in the prime factorization of n.

%H Amiram Eldar, <a href="/A375669/b375669.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.

%F a(n) = A051903(A000265(n)).

%F a(n) = 0 if and only if n is a power of 2 (A000079).

%F a(n) = 1 if and only if n is in A122132 \ A000079.

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} k * d(k) = 1.25979668632898014495... , where d(k) is the asymptotic density of the occurrences of k in this sequence: d(1) = 4/(3*zeta(2)), and d(k) = (1/zeta(k+1)) / (1-1/2^(k+1)) - (1/zeta(k)) / (1-1/2^k) for k >= 2.

%t a[n_] := Module[{o = n / 2^IntegerExponent[n, 2]}, If[o == 1, 0, Max[FactorInteger[o][[;;, 2]]]]]; Array[a, 100]

%o (PARI) a(n) = {my(o = n >> valuation(n, 2)); if(o == 1, 0, vecmax(factor(o)[,2]));}

%Y Cf. A000079, A000265, A051903, A122132, A375670.

%K nonn,easy

%O 1,9

%A _Amiram Eldar_, Aug 23 2024