OFFSET
1,14
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + Sum_{k>=2} (1 - 1/((1-1/2^k) * (1-1/3^k) * (1-1/5^k) * zeta(k))) = 1.05546104674564363968... .
In general, the asymptotic mean of the maximum exponent in the prime factorization of the p-rough numbers (numbers that are not divisible by any prime smaller than p) is 1 + Sum_{k>=2} (1 - 1/(zeta(k) * Product_{primes q < p} (1-1/q^k))).
MATHEMATICA
If[# == 1, 0, Max[FactorInteger[#][[;; , 2]]]] & /@ Select[Range[300], CoprimeQ[#, 30] &]
PROG
(PARI) lista(nmax) = print1(0, ", "); for(n = 2, nmax, if(gcd(n, 30) == 1, print1(vecmax(factor(n)[, 2]), ", ")));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Aug 23 2024
STATUS
approved