login
A318829
a(n) = A063994(n) / A049559(n) = (1/gcd(n-1, phi(n))) * Product_{primes p dividing n} gcd(p-1, n-1).
5
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2
OFFSET
1,15
COMMENTS
Records occur at: 1, 15, 85, 247, 671, 949, 1105, 1387, 2047, 2821, 9471, 11305, 13747, 13981, 29341, 40885, 51319, 63973, ...
LINKS
FORMULA
a(n) = A063994(n) / A049559(n).
a(n) = A160595(n) / A247074(n).
PROG
(PARI)
A049559(n) = gcd(eulerphi(n), n-1); \\ From A049559
A063994(n) = { my(f=factor(n)[, 1]); prod(i=1, #f, gcd(f[i]-1, n-1)); };
A318829(n) = (A063994(n)/A049559(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 09 2018
STATUS
approved