login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A318831
Restricted growth sequence transform of A278222(A000010(n)).
3
1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 1, 1, 1, 2, 3, 1, 2, 3, 4, 1, 3, 2, 3, 2, 5, 1, 6, 1, 3, 1, 2, 2, 3, 3, 2, 1, 3, 2, 7, 3, 2, 4, 8, 1, 7, 3, 1, 2, 4, 3, 3, 2, 3, 5, 8, 1, 6, 6, 3, 1, 2, 3, 3, 1, 4, 2, 4, 2, 3, 3, 3, 3, 6, 2, 8, 1, 9, 3, 7, 2, 1, 7, 5, 3, 4, 2, 3, 4, 6, 8, 3, 1, 2, 7, 6, 3, 4, 1, 9, 2, 2
OFFSET
1,7
COMMENTS
Sequence allots a distinct value for each distinct multiset formed from the lengths of 1-runs in the binary expansion of A000010(n).
For all i, j: a(i) = a(j) => A295660(i) = A295660(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A278222(n) = A046523(A005940(1+n));
v318831 = rgs_transform(vector(up_to, n, A278222(eulerphi(n))));
A318831(n) = v318831[n];
CROSSREFS
Compare also with the scatterplots of A286622, A304101 and A318832.
Sequence in context: A072347 A368684 A351034 * A303710 A263280 A136107
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 04 2018
STATUS
approved