login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368684
Number of partitions of n into 2 parts such that the smaller part divides both n and floor(n/2).
0
0, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2, 1, 6, 1, 2, 1, 4, 1, 4, 1, 5, 1, 2, 1, 6, 1, 2, 1, 6, 1, 4, 1, 4, 1, 2, 1, 8, 1, 3, 1, 4, 1, 4, 1, 6, 1, 2, 1, 8, 1, 2, 1, 6, 1, 4, 1, 4, 1, 4, 1, 9, 1, 2, 1, 4, 1, 4, 1, 8, 1, 2, 1, 8, 1, 2, 1, 6, 1, 6
OFFSET
1,4
COMMENTS
Essentially, A000005 interspersed with 1's [prepend 0].
Number of divisors of A057979(n+1) for n >= 2.
FORMULA
a(n) = A000005(A057979(n+1)) for n >= 2.
a(2n-1) = A060576(n), a(2n) = A000005(n).
a(n) = d(floor((n+1)/2))^((n+1) mod 2), for n >= 2.
a(n) = d( (n+2+(n-2)*(-1)^n)/4 ) for n >= 2.
a(n) = Sum_{k=1..floor(n/2)} c(n/k) * c(floor(n/2)/k), where c(m) = 1 - ceiling(m) + floor(m).
MATHEMATICA
Join[{0}, Table[DivisorSigma[0, (n+2+(n-2)*(-1)^n)/4], {n, 2, 100}]]
CROSSREFS
Bisections: A060576, A000005.
Cf. A057979.
Sequence in context: A066075 A359211 A072347 * A351034 A318831 A303710
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Jan 03 2024
STATUS
approved