login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368685
a(n) = Product_{j=1..n, k=1..n} (j + k + n).
3
1, 3, 600, 35562240, 1434015830016000, 70448433354492434841600000, 6610702315560389323908439364075520000000, 1709479709147705756603303596364188306401499545600000000000, 1660017838341811463102474357555838707949172571314554168163386261504000000000000
OFFSET
0,2
FORMULA
For n>0, a(n) = 3*BarnesG(n) * BarnesG(3*n) * Gamma(n)^2 * Gamma(3*n)^2 / (4*BarnesG(2*n)^2 * Gamma(2*n)^4).
a(n) ~ 3^(9*n^2/2 + 3*n + 5/12) * n^(n^2) / (2^(4*n^2 + 4*n + 5/6) * exp(3*n^2/2)).
MATHEMATICA
Table[Product[i+j+n, {i, 1, n}, {j, 1, n}], {n, 0, 8}]
Join[{1}, Table[3*BarnesG[n] * BarnesG[3*n] * Gamma[n]^2 * Gamma[3*n]^2 / (4*BarnesG[2*n]^2 * Gamma[2*n]^4), {n, 1, 8}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 03 2024
STATUS
approved