login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329706
Odd numbers k such that Sum_{j=1..(k-1)/2, gcd(j,k)=1} 1/j == -2*q_2(k) + k*q_2(k)^2 (mod k^3), where q_2(k) = (2^phi(k) - 1)/k is the Euler quotient of k to base 2.
0
1, 3, 597, 609, 1791, 2035, 3403, 3701, 4263, 27515, 27955
OFFSET
1,2
COMMENTS
Emma Lehmer proved that Sum_{j=1..(p-1)/2} 1/j == -2*q_2(p) + p*q_2(p)^2 (mod p^2) for all odd primes p.
Tianxin Cai generalized Lehmer's congruence and proved that Sum_{j=1..(k-1)/2, gcd(j,k)=1} 1/j == -2*q_2(k) + k*q_2(k)^2 (mod k^2) for all odd numbers k.
This sequence includes the odd numbers k for which the congruence is still valid when (mod k^2) is being replaced with (mod k^3).
The prime terms are 3, 3701, ...
No more terms below 147000.
LINKS
Tianxin Cai, A congruence involving the quotients of Euler and its applications (I), Acta Arithmetica, Vol. 103, No. 4 (2002), pp. 313-320.
Tianxin Cai, A Generalization of E. Lehmer's Congruence and Its Applications, in: ChaohuaJia and Kohji Matsumoto (eds.), Analytic Number Theory, Springer, Boston, MA, 2002, pp. 93-98.
Emma Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Annals of Mathematics, Second Series, Vol. 39, No. 2 (1938), pp. 350-360, alternative link.
MATHEMATICA
q[n_] := (2^EulerPhi[n] - 1)/n; Select[Range[1, 2100, 2], Divisible[Numerator[Sum[Boole @ CoprimeQ[j, #]/j, {j, 1, (# - 1)/2}] + 2*q[#] - #*q[#]^2], #^3] &]
CROSSREFS
Sequence in context: A137126 A264675 A203748 * A229748 A368685 A225761
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Feb 28 2020
STATUS
approved