login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329703
Number of meanders of length n with Dyck-steps avoiding the consecutive steps UDU and DUD.
0
1, 1, 2, 2, 3, 4, 6, 9, 14, 21, 33, 50, 79, 121, 192, 296, 471, 730, 1164, 1812, 2894, 4521, 7230, 11328, 18135, 28485, 45642, 71844, 115203, 181674, 291504, 460443, 739212, 1169283, 1878123, 2974574, 4779865, 7578937, 12183300, 19337489, 31096041, 49401526, 79465563, 126350742
OFFSET
0,3
COMMENTS
The Dyck step set is U=(1,1) and D=(1,-1). A meander is a path starting at (0,0) and never crossing the x-axis, i.e., staying at nonnegative altitude.
LINKS
Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, preprint, 2019.
FORMULA
G.f.: (1 - t - t^2 - t^3 + t^4 + t^5 - (1+t)*sqrt(t^8-2*t^6-t^4-2*t^2+1))/(2*t*(t^2+t-1)).
D-finite with recurrence: (n+1)*a(n) +(n-2)*a(n-1) -2*n*a(n-2) +(-2*n+3)*a(n-3) +(-n+2)*a(n-4) +(-n+4)*a(n-5) +(-2*n+13)*a(n-6) +2*(-n+9)*a(n-7) +(n-10)*a(n-8) +(n-11)*a(n-9)=0. - R. J. Mathar, Jan 27 2020
EXAMPLE
a(5)=4 since we have 4 meanders of length 5, namely UUUUU, UUUUD, UUUDD and UUDDU.
MATHEMATICA
CoefficientList[Series[(1 - x - x^2 - x^3 + x^4 + x^5 - (1 + x)*Sqrt[x^8 - 2 x^6 - x^4 - 2 x^2 + 1])/(2 x (x^2 + x - 1)), {x, 0, 43}], x] (* Michael De Vlieger, Dec 16 2019 *)
PROG
(PARI) Vec((1 - x - x^2 - x^3 + x^4 + x^5 - (1+x)*sqrt(x^8-2*x^6-x^4-2*x^2+1+O(x^40)))/(2*x*(x^2+x-1))) \\ Andrew Howroyd, Dec 20 2019
CROSSREFS
Cf. A004148, which counts Dyck paths (excursions) avoiding the same consecutive steps.
Sequence in context: A107293 A329693 A329976 * A001611 A214448 A039829
KEYWORD
nonn,walk
AUTHOR
Valerie Roitner, Dec 16 2019
STATUS
approved