OFFSET
0,3
COMMENTS
The Motzkin step set is U=(1,1), H=(1,0) and D=(1,-1). An excursion is a path starting at (0,0), ending at (n,0) and never crossing the x-axis, i.e., staying at nonnegative altitude.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..2742
Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, preprint, 2019.
Helmut Prodinger, Motzkin paths of bounded height with two forbidden contiguous subwords of length two, arXiv:2310.12497 [math.CO], 2023.
FORMULA
G.f.: (1 - t - t^3 - sqrt(1-2*t-3*t^2+6*t^3-2*t^4+t^6))/(2*t^2*(1-t)^2).
EXAMPLE
a(3)=3 since we have the following 3 excursions of length 3: UDH, HUD and HHH.
MATHEMATICA
CoefficientList[Series[(1 - x - x^3 - Sqrt[1 - 2 x - 3 x^2 + 6 x^3 - 2 x^4 + x^6])/(2 x^2 (1 - x)^2), {x, 0, 34}], x] (* Michael De Vlieger, Dec 16 2019 *)
PROG
(PARI) Vec((1 - x - x^3 - sqrt(1-2*x-3*x^2+6*x^3-2*x^4+x^6+O(x^40)))/(2*x^2*(1-x)^2)) \\ Andrew Howroyd, Dec 20 2019
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Valerie Roitner, Dec 16 2019
STATUS
approved