login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329705
Composite numbers k such that (1 - w)^(k-1) == 1 (mod k) in the ring of Eisenstein integers (w = (-1 + sqrt(3)*i)/2).
1
121, 703, 1729, 1891, 2821, 7381, 8401, 8911, 10585, 12403, 15457, 15841, 16531, 18721, 19345, 23521, 24661, 28009, 29341, 31621, 41041, 44287, 46657, 47197, 49141, 50881, 52633, 55969, 63139, 63973, 74593, 75361, 79003, 82513, 87913, 88573, 93961, 97567, 105163
OFFSET
1,1
COMMENTS
w = exp(2*Pi*i/3) = (-1 + sqrt(3)*i)/2, where i is the imaginary unit, is a unit in the ring of Eisenstein integers (usually denoted by the Greek letter omega).
Also Euler-Jacobi pseudoprimes to base 3 that are congruent to 1 (mod 6).
LINKS
Eric Weissteins's World of Mathematics, Eisenstein Integer.
Wikipedia, Eisenstein integer.
MATHEMATICA
eisProd[z1_, z2_] := {z1[[1]]*z2[[1]] - z1[[2]]*z2[[2]], z1[[1]]*z2[[2]] + z1[[2]]*z2[[1]] - z1[[2]]*z2[[2]]}; seq = {}; z = {1, 0}; Do[z = eisProd[{1, -1}, z]; If[CompositeQ[n] && And @@ Divisible[z - {1, 0}, n], AppendTo[seq, n]], {n, 2, 10^4}]; seq
CROSSREFS
Intersection of A016921 and A048950.
Sequence in context: A014749 A262051 A048950 * A020229 A141350 A235408
KEYWORD
nonn
AUTHOR
Amiram Eldar, Feb 28 2020
STATUS
approved