|
|
A048950
|
|
Base 3 Euler-Jacobi pseudoprimes.
|
|
4
|
|
|
121, 703, 1729, 1891, 2821, 3281, 7381, 8401, 8911, 10585, 12403, 15457, 15841, 16531, 18721, 19345, 23521, 24661, 28009, 29341, 31621, 41041, 44287, 46657, 47197, 49141, 50881, 52633, 55969, 63139, 63973, 74593, 75361, 79003, 82513
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Odd composite n with gcd(n,3)=1 and 3^((n-1)/2) == (3,n) (mod n) where (.,.) is the Jacobi symbol. - R. J. Mathar, Jul 15 2012
The base 5 Euler-Jacobi pseudoprimes are 781, 1541, 1729, 5461, 5611, 6601, 7499,... - R. J. Mathar, Jul 15 2012
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..10000
A. Rotkiewicz, On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with Parameters L, Q in arithmetic progressions, Math. Comp 39 (159) (1982) 239-247.
Eric Weisstein's World of Mathematics, Euler-Jacobi Pseudoprime.
Index entries for sequences related to pseudoprimes
|
|
MATHEMATICA
|
Select[Range[1, 10^5, 2], GCD[#, 3] == 1 && CompositeQ[#] && PowerMod[3, (# - 1)/2, #] == Mod[JacobiSymbol[3, #], #] &] (* Amiram Eldar, Jun 28 2019 *)
|
|
PROG
|
(PARI) is(n) = n%2==1 && gcd(n, 3)==1 && Mod(3, n)^((n-1)/2)==kronecker(3, n)
forcomposite(c=1, 83000, if(is(c), print1(c, ", "))) \\ Felix Fröhlich, Jul 15 2019
|
|
CROSSREFS
|
Cf. A047713 (base 2), A005935.
Sequence in context: A036306 A014749 A262051 * A329705 A020229 A141350
Adjacent sequences: A048947 A048948 A048949 * A048951 A048952 A048953
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Eric W. Weisstein
|
|
STATUS
|
approved
|
|
|
|