OFFSET
1,4
LINKS
David Callan, A Combinatorial Interpretation for Sequence A345973 in OEIS, arXiv:2108.04969 [math.CO], 2021.
FORMULA
G.f.: x + x^2 * exp(Sum_{n>=1} Sum_{k>=1} a(n)^k * x^(n*k) / k).
a(n+2) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d * a(d)^(k/d) ) * a(n-k+2).
MAPLE
a:= proc(n) option remember; `if`(n<3, 1, add(a(n-k)*add(d*
a(d)^(k/d), d=numtheory[divisors](k)), k=1..n-2)/(n-2))
end:
seq(a(n), n=1..37); # Alois P. Heinz, Jul 01 2021
MATHEMATICA
a[n_] := a[n] = SeriesCoefficient[x + x^2/Product[(1 - a[k] x^k), {k, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 37}]
a[1] = a[2] = 1; a[n_] := a[n] = (1/(n - 2)) Sum[Sum[d a[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 37}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 30 2021
STATUS
approved