The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324444 a(n) = Product_{i=1..n, j=1..n} (1 + i + j). 5
 3, 240, 1512000, 1536288768000, 429266120461516800000, 50406068004584362019389440000000, 3534677027377560888380072035048488960000000000, 199761495428405897006583857561824669625759249203200000000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS FORMULA a(n) ~ A * 2^(2*n^2 + 4*n + 11/12) * n^(n^2 - 23/12) / (Pi * exp(3*n^2/2 + 1/12)), where A is the Glaisher-Kinkelin constant A074962. a(n) = BarnesG(2*n + 3) / BarnesG(n + 3)^2. Product_{i=1..n, j=1..n} (1 + 1/(i + j)) = a(n) / A079478(n) ~ 2^(2*n + 1) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 29 2019 MATHEMATICA Table[Product[1 + i + j, {i, 1, n}, {j, 1, n}], {n, 1, 10}] Table[BarnesG[2*n + 3] / BarnesG[n + 3]^2, {n, 1, 10}] PROG (PARI) a(n) = prod(i=1, n, prod(j=1, n, 1+i+j)); \\ Michel Marcus, Feb 28 2019 (MAGMA) [(&*[(&*[1+k+j: j in [1..n]]): k in [1..n]]): n in [1..10]]; // G. C. Greubel, Feb 28 2019 (Sage) [product( product(1+k+j for j in (1..n)) for k in (1..n)) for n in (1..10)] # G. C. Greubel, Feb 28 2019 CROSSREFS Cf. A079478, A306594. Sequence in context: A264549 A024044 A069640 * A236249 A338453 A013778 Adjacent sequences:  A324441 A324442 A324443 * A324445 A324446 A324447 KEYWORD nonn AUTHOR Vaclav Kotesovec, Feb 28 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 17:12 EST 2022. Contains 350565 sequences. (Running on oeis4.)