This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A069640 Let M_n be the n X n matrix with M_n(i,j)=1/(i+j+1); then a(n)=1/det(M_n). 3
 3, 240, 378000, 10668672000, 5175372787200000, 42202225467872870400000, 5708700736339601341845504000000, 12701009683686045652926579789004800000000, 462068939479146913162956288390362787269836800000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Wolfram Research, 1991 Mathematica Conference, Elementary Tutorial Notes, Section 1, Introduction to Mathematica, Paul Abbott, page 19. LINKS Robert Israel, Table of n, a(n) for n = 1..40 FORMULA a(n) = (2*n+1)!!*(n!*Product[(2*k)!/k!/(k+1)!,{k,0,n}])^2. a(n) = (2*n+1)!!*(n!*A003046(n))^2, where A003046(n)is the Product of first n Catalan numbers A000108(n). a(n) = (2*n+1)!*n!/(2^n)*A003046(n)^2. - Alexander Adamchuk, May 17 2006 a(n) ~ A^3 * 2^(2*n^2+3*n+11/12) / (exp(1/4) * n^(7/4) * Pi^(n+1)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014 MAPLE seq(1/LinearAlgebra:-Determinant(LinearAlgebra:-HilbertMatrix(n, n, -1)), n=1..10); # Robert Israel, Sep 26 2018 MATHEMATICA Hilbert[n_Integer] := Table[1/(i + j + 1), {i, n}, {j, n}]; Table[ 1 / Det[ Hilbert[n]], {n, 1, 8}] (* Robert G. Wilson v, Mar 13 2004 *) Table[(2*n+1)!!*(n!*Product[(2*k)!/k!/(k+1)!, {k, 0, n}])^2, {n, 1, 11}] (* Alexander Adamchuk, May 17 2006 *) Table[2^(2*n^2+2*n-1/12) * Glaisher^3 * BarnesG[n+3/2]^2 *(n!)^2 *(2*n+1)!!/(E^(1/4)*Pi^(n+1/2)*BarnesG[n+3]^2), {n, 1, 11}] (* Vaclav Kotesovec, Mar 09 2014 *) PROG (PARI) for(n=1, 10, print1(1/matdet(matrix(n, n, i, j, 1/(i+j+1))), ", ")) CROSSREFS Cf. A000108, A003046, A005249, A067689, A074962. Sequence in context: A142730 A264549 A024044 * A324444 A236249 A013778 Adjacent sequences:  A069637 A069638 A069639 * A069641 A069642 A069643 KEYWORD easy,nonn AUTHOR Benoit Cloitre, Apr 21 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 22:20 EDT 2019. Contains 327252 sequences. (Running on oeis4.)