This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A069640 Let M_n be the n X n matrix with M_n(i,j)=1/(i+j+1); then a(n)=1/det(M_n). 2
 3, 240, 378000, 10668672000, 5175372787200000, 42202225467872870400000, 5708700736339601341845504000000, 12701009683686045652926579789004800000000, 462068939479146913162956288390362787269836800000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Wolfram Research, 1991 Mathematica Conference, Elementary Tutorial Notes, Section 1, Introduction to Mathematica, Paul Abbott, page 19. LINKS FORMULA a(n) = (2*n+1)!!*(n!*Product[(2*k)!/k!/(k+1)!,{k,0,n}])^2. a(n) = (2*n+1)!!*(n!*A003046(n))^2, where A003046(n)is the Product of first n Catalan numbers A000108(n). a(n) = (2*n+1)!*n!/(2^n)*A003046(n)^2. - Alexander Adamchuk, May 17 2006 a(n) ~ A^3 * 2^(2*n^2+3*n+11/12) / (exp(1/4) * n^(7/4) * Pi^(n+1)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014 MATHEMATICA Hilbert[n_Integer] := Table[1/(i + j + 1), {i, n}, {j, n}]; Table[ 1 / Det[ Hilbert[n]], {n, 1, 8}] (* Robert G. Wilson v, Mar 13 2004 *) Table[(2*n+1)!!*(n!*Product[(2*k)!/k!/(k+1)!, {k, 0, n}])^2, {n, 1, 11}] (* Alexander Adamchuk, May 17 2006 *) Table[2^(2*n^2+2*n-1/12) * Glaisher^3 * BarnesG[n+3/2]^2 *(n!)^2 *(2*n+1)!!/(E^(1/4)*Pi^(n+1/2)*BarnesG[n+3]^2), {n, 1, 11}] (* Vaclav Kotesovec, Mar 09 2014 *) PROG (PARI) for(n=1, 10, print1(1/matdet(matrix(n, n, i, j, 1/(i+j+1))), ", ")) CROSSREFS Cf. A000108, A003046, A005249, A067689, A074962. Sequence in context: A142730 A264549 A024044 * A236249 A013778 A146313 Adjacent sequences:  A069637 A069638 A069639 * A069641 A069642 A069643 KEYWORD easy,nonn AUTHOR Benoit Cloitre, Apr 21 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 21:25 EST 2017. Contains 296020 sequences.