login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A069640 Let M_n be the n X n matrix with M_n(i,j)=1/(i+j+1); then a(n)=1/det(M_n). 3
3, 240, 378000, 10668672000, 5175372787200000, 42202225467872870400000, 5708700736339601341845504000000, 12701009683686045652926579789004800000000, 462068939479146913162956288390362787269836800000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

Wolfram Research, 1991 Mathematica Conference, Elementary Tutorial Notes, Section 1, Introduction to Mathematica, Paul Abbott, page 19.

LINKS

Robert Israel, Table of n, a(n) for n = 1..40

FORMULA

a(n) = (2*n+1)!!*(n!*Product[(2*k)!/k!/(k+1)!,{k,0,n}])^2. a(n) = (2*n+1)!!*(n!*A003046(n))^2, where A003046(n)is the Product of first n Catalan numbers A000108(n). a(n) = (2*n+1)!*n!/(2^n)*A003046(n)^2. - Alexander Adamchuk, May 17 2006

a(n) ~ A^3 * 2^(2*n^2+3*n+11/12) / (exp(1/4) * n^(7/4) * Pi^(n+1)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014

MAPLE

seq(1/LinearAlgebra:-Determinant(LinearAlgebra:-HilbertMatrix(n, n, -1)), n=1..10); # Robert Israel, Sep 26 2018

MATHEMATICA

Hilbert[n_Integer] := Table[1/(i + j + 1), {i, n}, {j, n}]; Table[ 1 / Det[ Hilbert[n]], {n, 1, 8}] (* Robert G. Wilson v, Mar 13 2004 *)

Table[(2*n+1)!!*(n!*Product[(2*k)!/k!/(k+1)!, {k, 0, n}])^2, {n, 1, 11}] (* Alexander Adamchuk, May 17 2006 *)

Table[2^(2*n^2+2*n-1/12) * Glaisher^3 * BarnesG[n+3/2]^2 *(n!)^2 *(2*n+1)!!/(E^(1/4)*Pi^(n+1/2)*BarnesG[n+3]^2), {n, 1, 11}] (* Vaclav Kotesovec, Mar 09 2014 *)

PROG

(PARI) for(n=1, 10, print1(1/matdet(matrix(n, n, i, j, 1/(i+j+1))), ", "))

CROSSREFS

Cf. A000108, A003046, A005249, A067689, A074962.

Sequence in context: A142730 A264549 A024044 * A236249 A013778 A146313

Adjacent sequences:  A069637 A069638 A069639 * A069641 A069642 A069643

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre, Apr 21 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 13:05 EDT 2018. Contains 316422 sequences. (Running on oeis4.)