|
|
A069638
|
|
"Sorted" sum of two previous terms, beginning with 0,1. "Sorted" means to sort the digits of the sum in ascending order.
|
|
13
|
|
|
0, 1, 1, 2, 3, 5, 8, 13, 12, 25, 37, 26, 36, 26, 26, 25, 15, 4, 19, 23, 24, 47, 17, 46, 36, 28, 46, 47, 39, 68, 17, 58, 57, 115, 127, 224, 135, 359, 449, 88, 357, 445, 28, 347, 357, 47, 44, 19, 36, 55, 19, 47, 66, 113, 179, 229, 48, 277, 235, 125, 36, 116, 125, 124, 249, 337
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
The maximum value in this sequence is 667. After the 75th term, the next 120 terms (a(76) - a(195)) repeat as a group infinitely.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = SORT[a(n-1) + a(n-2)].
|
|
EXAMPLE
|
a(8)=12 because a(7)+a(6)=13+8=21 and the digits of 21 sorted in ascending order = 12.
Also a(17)=4 because a(16)+a(15)=15+25=40 and the digits of 40 sorted in ascending order = 04, or just 4;
|
|
MAPLE
|
a:= proc(n) option remember; `if`(n<2, n, parse(cat(
sort(convert(a(n-1)+a(n-2), base, 10))[])))
end:
|
|
MATHEMATICA
|
a[0]:=0
a[1]:=1
a[n_] := a[n]=FromDigits[Sort[IntegerDigits[a[n-1]+a[n-2]]]] (* Peter J. C. Moses, Feb 08 2014 *)
nxt[{a_, b_}]:={b, FromDigits[Sort[IntegerDigits[a+b]]]}; NestList[nxt, {0, 1}, 70][[All, 1]] (* Harvey P. Dale, Jul 27 2020 *)
|
|
PROG
|
(Python)
a, terms = [0, 1], 66
[a.append(int("".join(sorted(str(a[-2]+a[-1]))))) for n in range(2, terms)]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|