login
A364120
Digitsum of a(n) + digitsum of a(n+1) divides a(n+2). This is the lexicographically earliest sequence of distinct positive terms with this property.
5
1, 2, 3, 5, 8, 13, 12, 7, 10, 16, 24, 26, 14, 39, 17, 20, 30, 15, 9, 45, 18, 36, 54, 72, 90, 108, 126, 144, 162, 180, 198, 27, 81, 216, 234, 252, 270, 288, 135, 189, 243, 297, 324, 351, 306, 342, 360, 378, 405, 432, 396, 459, 468, 504, 486, 513, 540, 414, 450, 522, 558, 567, 576, 612, 594, 621, 648, 675, 684
OFFSET
1,2
LINKS
Eric Angelini, SuperSums, SuperProducts, personal blog.
Michael De Vlieger, Log log scatterplot of a(n), n = 1..2^20.
EXAMPLE
digitsum a(1) + digitsum a(2) = 1 + 2 = 3 and 3 divides exactly a(3) = 3;
digitsum a(2) + digitsum a(3) = 2 + 3 = 5 and 5 divides exactly a(4) = 5;
digitsum a(3) + digitsum a(4) = 3 + 5 = 8 and 8 divides exactly a(5) = 8;
digitsum a(4) + digitsum a(5) = 5 + 8 = 13 and 13 divides exactly a(6) = 13;
digitsum a(5) + digitsum a(6) = 8 + 1 + 3 = 12 and 12 divides exactly a(7) = 12; etc.
MATHEMATICA
nn = 80; c[_] := False; m[_] := 1; Array[Set[{a[#], c[#]}, {#, True}] &, 2]; d = i = 1; dd = j = 2; Do[k = d + dd; While[c[k m[k]], m[k]++]; k *= m[k]; Set[{a[n], c[k], i, j, d, dd}, {k, True, j, k, dd, Total@ IntegerDigits[k]}], {n, 3, nn}]; Array[a, nn] (* Michael De Vlieger, Jul 12 2023 *)
PROG
(PARI) {a=List(u=[1, 2]); for(n=2, 99, s=sumdigits(a[n-1])+sumdigits(a[n]);
forstep(k=s, oo, s, set search (u, k)&& next; listput(a, k); u=setunion(u, [k]);
break)); a}
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Eric Angelini and M. F. Hasler, Jul 12 2023
EXTENSIONS
Edited definition. - N. J. A. Sloane, Aug 26 2023
STATUS
approved