login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364117
a(n) = [x^n] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x))^(n+1) for n >= 0.
3
1, 5, 163, 14409, 2511251, 730485013, 320259339415, 197591579213969, 163325387776051459, 174310058440646865021, 233402385203650889753429, 383208210107883180333696265, 757120215942256247847040802463, 1772210276849283299764079883683173
OFFSET
0,2
COMMENTS
First subdiagonal of A364113.
FORMULA
Conjectures:
1) the supercongruences a(p) == 2*p + 3 (mod p^3) hold for all primes p >= 5 (checked up to p = 101).
2) the supercongruences a(p - 1) == 1 (mod p^4) hold for all primes p >= 3 (checked up to p = 101).
3) more generally, the supercongruences a(p^k - 1) == 1 (mod p^(3+k)) may hold for all primes p >= 3 and all k >= 1.
MAPLE
a(n) := coeff(series( 1/(1-x)* LegendreP(n, (1+x)/(1-x))^(n+1), x, 21), x, n):
seq(a(n), n = 0..20);
CROSSREFS
Sequence in context: A195951 A128068 A197095 * A247468 A304056 A305450
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jul 08 2023
STATUS
approved