login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364114
a(n) = [x^n] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x))^3 for n >= 0.
4
1, 7, 163, 5623, 235251, 11009257, 554159719, 29359663991, 1615702377331, 91558286583757, 5310712888211413, 313940484249068761, 18853030977961798359, 1147317139889540758509, 70618205829113737707663, 4389482803713232076789623, 275190242843266217113413491
OFFSET
0,2
COMMENTS
Row 3 of A364113.
Compare with the two types of Apéry numbers A005258 and A005259, which are related to the Legendre polynomials by A005258(n) = [x^n] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x)) and A005259(n) = [x^k] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x))^2.
Both types of Apéry numbers satisfy the supercongruences
1) u (n*p^r) == u(n*p^(r-1)) (mod p^(3*r))
and the shifted supercongruences
2) u (n*p^r - 1) == u(n*p^(r-1) - 1) (mod p^(3*r))
for all primes p >= 5 and positive integers n and r.
We conjecture that the present sequence also satisfies the supercongruences 1) and 2).
FORMULA
a(n) ~ (1921 + 533*sqrt(13))^(n + 1/2) / (13^(1/4) * Pi^2 * n^2 * 2^(n + 7/2) * 3^(3*n + 1/2)). - Vaclav Kotesovec, Jul 09 2023
Conjectures:
1) 3*a(p) - 11*a(p-1) == 10 (mod p^5) for all primes p >= 7 (checked up to p = 101).
2) a(p)^21 == (7^21)*a(p-1)^11 (mod p^5) for all primes p >= 7 (checked up to p = 101).
EXAMPLE
Examples of supercongruences:
a(7) - a(1) = 29359663991 - 7 = (2^4)*(7^3)*37*144589 == 0 (mod 7^3).
a(7 - 1) - a(0) = 554159719 - 1 = 2*(3^4)*(7^3)*9973 == 0 (mod 7^3).
a(5^2) - a(5) = 5343160378366596176372561346633696195759257 - 11009257 = (2^4)*(5^6)*21372641513466384705490245386534784739 == 0 (mod 5^6).
a(5^2 - 1) - a(5 - 1) = 81394273032250674032560324508765757297751 - 235251 = (2^2)*(5^6)*7*13*29*6317*78120239161449483411026081851 == 0 (mod 5^6).
MAPLE
a(n) := coeff(series( 1/(1-x)* LegendreP(n, (1+x)/(1-x))^3, x, 21), x, n):
seq(a(n), n = 0..20);
MATHEMATICA
Table[SeriesCoefficient[1/(1 - x) * LegendreP[n, (1 + x)/(1 - x)]^3, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 09 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jul 07 2023
STATUS
approved