login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212856
Number of 3 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.
19
1, 1, 7, 163, 8983, 966751, 179781181, 53090086057, 23402291822743, 14687940716402023, 12645496977257273257, 14490686095184389113277, 21557960797148733086439949, 40776761007750226749220637461, 96332276574683758035941025907591
OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..183 (terms n=1..19 from R. H. Hardin)
Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250.
FORMULA
a(n) = f(n) * n!, where f(0) = 1, f(n) = Sum_{k=0..n-1} (-1)^(n+k+1) * f(k) * binomial(n, k)^2 / (n-k)!. - Daniel Suteu, Feb 23 2018
a(n) = (n!)^3 * [x^n] 1 / (1 + Sum_{k>=1} (-x)^k / (k!)^3). - Seiichi Manyama, Jul 18 2020
a(n) ~ c * n!^3 / r^n, where r = 1.16151549806386358435938834554462085598002... is the root of the equation HypergeometricPFQ[{}, {1, 1}, -r] = 0 and c = 1.182760720067731330743886867947078139186402925891650811631774628... - Vaclav Kotesovec, Sep 16 2020
EXAMPLE
Some solutions for n=3:
2 1 0 2 0 1 1 2 0 0 2 1 2 0 1 2 1 0 2 1 0
0 2 1 2 0 1 0 2 1 2 1 0 2 1 0 2 1 0 2 0 1
0 2 1 2 1 0 2 0 1 2 0 1 0 1 2 1 2 0 2 0 1
MAPLE
A212856 := proc(n) sum(z^k/k!^3, k = 0..infinity);
series(%^x, z=0, n+1): n!^3*coeff(%, z, n); add(abs(coeff(%, x, k)), k=0..n) end:
seq(A212856(n), n=0..14); # Peter Luschny, May 27 2017
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, -add(
binomial(n, j)^3*(-1)^j*a(n-j), j=1..n))
end:
seq(a(n), n=0..15); # Alois P. Heinz, Apr 26 2020
MATHEMATICA
f[0] = 1; f[n_] := f[n] = Sum[(-1)^(n+k+1)*f[k]*Binomial[n, k]^2/(n-k)!, {k, 0, n-1}]; a[n_] := f[n]*n!; Array[a, 14] (* Jean-François Alcover, Feb 27 2018, after Daniel Suteu *)
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 28 2012
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Apr 26 2020
STATUS
approved