The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098274 Sum_{k = 0..n} C(n, k)^2*C(n+k, n)*C(n+2*k, n). 1
 1, 7, 163, 5191, 191251, 7665757, 324610399, 14287393351, 647133545107, 29966682138757, 1412267381766913, 67516263948005341, 3266295503353540399, 159606073670867165713, 7866072852462175900663 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Coefficients in a simultaneous approximation to zeta(2) and zeta(3). LINKS W. Zudilin, Approximations to -, di- and tri-logarithms, arXiv:math/0409023 [math.CA], 2004-2005. FORMULA a(n) = (-1)^n * Sum_{k = 0..n} (-1)^k*C(n, k)*C(n+k, k)^3. From Peter Bala, Jan 18 2020: (Start) a(n) = Sum_{0 <= j, k <= n} (-1)^(j+k)*C(n, k)*C(n, j)*C(n+k, k)*C(n+k+j, k+j)^2. a(n) = Sum_{0 <= j, k <= n} (-1)^(n+k)*C(n, k)*C(n, j)^2*C(n+k, k)*C(n+k+j, k+j). (End) a(n) = hypergeom([1/2+n/2, 1+n/2, -n, -n, 1+n], [1/2, 1, 1, 1],  1). - Peter Luschny, Jan 19 2020 MAPLE a := n -> hypergeom([1/2 + n/2, 1 + n/2, -n, -n, 1 + n], [1/2, 1, 1, 1],  1): seq(simplify(a(n)), n=0..14); # Peter Luschny, Jan 19 2020 MATHEMATICA Table[Sum[Binomial[n, k]^2 Binomial[n+k, n]Binomial[n+2k, n], {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Aug 17 2019 *) PROG (MAGMA) [&+[Binomial(n, k)^2 * Binomial(n+k, n) * Binomial(n+2*k, n): k in [0..n]]:n in  [0..15]]; // Marius A. Burtea, Jan 19 2020 CROSSREFS Cf. A005258, A005259, A098275. Sequence in context: A201179 A218998 A220921 * A027549 A212856 A351610 Adjacent sequences:  A098271 A098272 A098273 * A098275 A098276 A098277 KEYWORD nonn,easy AUTHOR Ralf Stephan, Sep 03 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 2 21:48 EDT 2022. Contains 355029 sequences. (Running on oeis4.)