OFFSET
0,3
LINKS
G. Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, 6 (1965), Eq. (85) p. 98.
M. Bousquet-Mélou, Walks in the quarter plane: Kreweras' algebraic model, arXiv:math/0401067 [math.CO], 2004-2006.
FORMULA
T(n, k) = 4^n * (2k+1)/[(n+k+1)*(2n+2k+1)] * C(2k, k) * C(3n+2k, n).
T(n, k) = 2^(2*k)*(k+2*n)!/(k!*(2*n+2)!)*(2*n-2*k+2)!/((n-k)!*(n-k+1)!), as a triangle. - Michel Marcus, Nov 19 2014
EXAMPLE
As an array:
1 2 16 192 2816 46592
1 8 96 1408 23296 417792
2 30 480 8320 153600 2976768
5 112 2240 44800 913920 19066880
14 420 10080 228480 5107200 114250752
...
As a regular triangle:
1;
1, 2;
2, 8, 16;
5, 30, 96, 192;
14, 112, 480, 1408, 2816;
...
MATHEMATICA
T[n_, k_] := 4^n (2k+1)/((n+k+1)(2n+2k+1)) Binomial[2k, k] Binomial[3n+2k, n];
Table[T[n-k, k], {n, 0, 8}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)
PROG
(PARI) T(n, k)=4^n*(2*k+1)/(n+k+1)/(2*n+2*k+1)*binomial(2*k, k)*binomial(3*n+2*k, n)
(PARI) tabl(nn) = {for (n=0, nn, for (k=0, n, print1(2^(2*k)*(k+2*n)!/(k!*(2*n+2)!)*(2*n-2*k+2)!/((n-k)!*(n-k+1)!); , ", "); ); print(); ); } \\ Michel Marcus, Nov 19 2014
CROSSREFS
KEYWORD
AUTHOR
Ralf Stephan, Sep 02 2004
STATUS
approved