OFFSET
0,2
FORMULA
G.f.: A(x) = C(x)/C(-x) = (1 - sqrt(1 - 4*x))/(sqrt(1 + 4*x) - 1), where C(x) is the g.f. of A000108.
G.f.: A(x) = F(x^2) + 2*x*F(x^2)^2 = (C(x) + C(-x))/2 + 2*x*C(4*x^2), where F(x) is the g.f. of A048990.
G.f.: A(-x) = 1/A(x).
G.f.: A(x) = R(x*C(-x)^2) = 1/R(-x*C(x)^2), where R(x) is the g.f. of A006318.
G.f.: A(x) = (1 + x*C(x)*C(-x))/(1 - x*C(x)*C(-x)), see A079489 for the expansion of C(x)*C(-x).
D-finite with recurrence n*(n-1)*(n+1)*a(n) -4*(n-1)*(8*n^2-32*n+35)*a(n-2) +64*(2*n-5)*(2*n-7)*(n-4)*a(n-4)=0. - R. J. Mathar, Mar 06 2022
Sum_{n>=0} 1/a(n) = 28/15 + 2*Pi/(9*sqrt(3)) + 64*arcsin(1/4)/(75*sqrt(15)) - 12*log(phi)/(25*sqrt(5)), where phi is the golden ratio (A001622). - Amiram Eldar, Apr 20 2023
G.f.: A(x) = exp( Sum_{n >= 1} binomial(4*n-2,2*n-1)*x^(2*n-1)/(2*n-1) ). - Peter Bala, Apr 28 2023
MAPLE
gf:= (c-> c(x)/c(-x))(x-> hypergeom([1/2, 1], [2], 4*x)):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..35); # Alois P. Heinz, Nov 23 2021
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-4x])/(Sqrt[1+4x]-1), {x, 0, 24}], x]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alexander Burstein, Nov 23 2021
STATUS
approved