login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349651
E.g.f. satisfies: A(x)^(A(x)^3) = 1 + x.
5
1, 1, -6, 81, -1776, 54240, -2125122, 101631558, -5739235128, 373745355984, -27572590788480, 2272763834553168, -207013811669644680, 20647997125333476912, -2238256520486195804280, 262010379635788799196360, -32939968662220720559744448
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = (-1)^(n-1) * Sum_{k=0..n} (3*k-1)^(k-1) * |Stirling1(n,k)|.
E.g.f. A(x) = -Sum_{k>=0} (3*k-1)^(k-1) * (-log(1+x))^k / k!.
E.g.f.: A(x) = ( 3*log(1+x)/LambertW(3*log(1+x)) )^(1/3).
a(n) ~ -(-1)^n * n^(n-1) * exp(1/6 - n + n*exp(-1)/3) / (sqrt(3) * (exp(exp(-1)/3) - 1)^(n - 1/2)). - Vaclav Kotesovec, Nov 24 2021
MATHEMATICA
nmax = 20; A[_] = 1;
Do[A[x_] = (1 + x)^(1/A[x]^3) + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
PROG
(PARI) a(n) = (-1)^(n-1)*sum(k=0, n, (3*k-1)^(k-1)*abs(stirling(n, k, 1)));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-sum(k=0, N, (3*k-1)^(k-1)*(-log(1+x))^k/k!)))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((3*log(1+x)/lambertw(3*log(1+x)))^(1/3)))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Nov 23 2021
STATUS
approved