login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372321
Expansion of e.g.f. -exp( x + LambertW(-3*x)/3 ).
3
-1, 0, 6, 81, 1620, 45765, 1671678, 74794671, 3958829640, 241898775273, 16756621904970, 1297547591499819, 111065107263415308, 10412999996499836541, 1061234184094567585326, 116812280111404106348415, 13810631408232372091755792, 1745470697932523785587735249
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = Sum_{k=0..n} (3*k-1)^(k-1) * binomial(n,k).
G.f.: Sum_{k>=0} (3*k-1)^(k-1) * x^k / (1-x)^(k+1).
a(n) ~ 3^(n-1) * n^(n-1) * exp((exp(-1) - 1)/3). - Vaclav Kotesovec, May 06 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-exp(x+lambertw(-3*x)/3)))
(PARI) a(n) = sum(k=0, n, (3*k-1)^(k-1)*binomial(n, k));
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 27 2024
STATUS
approved