login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064341 Generalized Catalan numbers C(3,3; n). 1
1, 1, 6, 81, 1566, 36126, 921456, 25055001, 711951606, 20891575566, 628237506276, 19259213633226, 599654171202156, 18911332670183856, 602840023457208516, 19392890824608619401, 628769286622411762086 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

See triangle A064879 with columns m built from C(m,m; n), m >= 0, also for Derrida et al. and Liggett references.

LINKS

Table of n, a(n) for n=0..16.

J. Abate, W. Whitt, Brownian Motion and the Generalized Catalan Numbers, J. Int. Seq. 14 (2011) # 11.2.6, corollary 6.

FORMULA

a(n)= ((9^(n-1))/(n-1))*sum((m+1)*(m+2)*binomial(2*(n-2)-m, n-2-m)*((1/3)^(m+1)), m=0..n-2), n >= 2, a(0) := 1=: a(1).

G.f.:(1-5*x*c(9*x))/(1-3*x*c(9*x))^2 = c(9*x)*(5+4*c(9*x))/(1+2*c(9*x))^2 = (5*c(9*x)*(3*x)^2+4*(1+4*x))/(2+3*x)^2 with c(x)= A(x) g.f. of Catalan numbers A000108.

2*(-n+1)*a(n) +3*(23*n-60)*a(n-1) +54*(2*n-3)*a(n-2)=0. - R. J. Mathar, Aug 09 2017

CROSSREFS

A064340.

Sequence in context: A196909 A197076 A234872 * A349505 A052756 A349651

Adjacent sequences:  A064338 A064339 A064340 * A064342 A064343 A064344

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Oct 12 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 21:32 EST 2021. Contains 349416 sequences. (Running on oeis4.)