login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064879
Triangle of numbers composed of certain generalized Catalan numbers.
11
1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 5, 4, 1, 1, 0, 14, 28, 6, 1, 1, 0, 42, 256, 81, 8, 1, 1, 0, 132, 2704, 1566, 176, 10, 1, 1, 0, 429, 31168, 36126, 5888, 325, 12, 1, 1, 0, 1430, 380608, 921456, 238848, 16750, 540, 14, 1
OFFSET
0,8
COMMENTS
The column sequences (without leading zeros) for m=0..10 give: A019590, A000108, A064340-7, A064878. Row sums give A064880.
The sequence for column m (m >= 1) (without leading zeros and the first 1) appears in the Derrida et al. 1992 reference as Z_{N}=:Y_{N}(N+1), N >=0, for alpha = beta = m. In the Derrida et al. 1993 reference the formula in eq. (39) gives Z_{N}(alpha,beta)/(alpha*beta)^N for N>=1. See also Liggett reference, proposition 3.19, p. 269, with lambda for alpha and rho for 1-beta.
REFERENCES
B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687; eqs. (20), (21), p. 672.
B. Derrida, M. R. Evans, V. Hakim and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A 26, 1993, 1493-1517; eq. (39), p. 1501, also appendix A1, (A12) p. 1513.
T. M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Springer, 1999, p. 269.
FORMULA
a(n, m) = C(m, m; n-m) if n >= m, else 0, with C(m, m; n) := ((m^(2*(n-1)))/(n-1))*sum((k+1)*(k+2)*binomial(2*(n-2)-k, n-2-k)*((1/m)^(k+1)), k=0..n-2), n >= 2; C(m, m; 0) := 1=:C(m, m; 1).
G.f.: (x^m)*(1+(1-2*m)*x*c(x*m^2))/(1-m*x*c(x*m^2))^2 = (x^m)*((2*m-1)*c(x*m^2)*(m*x)^2 +(1-m)*(1-m+(1-3*m)*x))/(1-m-m*x)^2, m >= 0. For m >= 1 also: (x^m)*c(x*m^2)*(2*m-1+c(x*m^2)*(m-1)^2)/(1+(m-1)*c(x*m^2))^2.
In the G.f. the g.f. c(x) of A000108 (Catalan) appears.
EXAMPLE
{1}; {1,1}; {0,1,1}; {0,2,1,1}; {0,5,4,1,1}; ...
CROSSREFS
Sequence in context: A122049 A238802 A229892 * A173591 A343320 A156603
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Oct 12 2001
STATUS
approved