login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156603
Square array T(n, k) = Product_{j=1..n} p(j, k+1), p(n, x) = Sum_{j=0..n} (-1)^j*A053122(n, j)*x^j, and T(n, 0) = n!, read by antidiagonals.
5
1, 1, 1, 1, 1, 2, 1, 1, 0, 6, 1, 1, -1, 0, 24, 1, 1, -2, 0, 0, 120, 1, 1, -3, -6, 0, 0, 720, 1, 1, -4, -24, 24, 0, 0, 5040, 1, 1, -5, -60, 504, 120, 0, 0, 40320, 1, 1, -6, -120, 3360, 27720, -720, 0, 0, 362880, 1, 1, -7, -210, 13800, 702240, -3991680, -5040, 0, 0, 3628800
OFFSET
0,6
FORMULA
T(n, k) = Product_{j=1..n} p(j, k+1), p(n, x) = Sum_{j=0..n} (-1)^j*A053122(n, j)*x^j, and T(n, 0) = n! (square array).
T(n, k) = Product_{j=0..n-1} (-1)^j*ChebyshevU(j, (k-1)/2) with T(n, 0) = n! for n >= 1, and T(0, k) = 1 (square array). - G. C. Greubel, Jun 25 2021
EXAMPLE
Square array begins as:
1, 1, 1, 1, 1, 1, 1 ...;
1, 1, 1, 1, 1, 1, 1 ...;
2, 0, -1, -2, -3, -4, -5 ...;
6, 0, 0, -6, -24, -60, -120 ...;
24, 0, 0, 24, 504, 3360, 13800 ...;
120, 0, 0, 120, 27720, 702240, 7603800 ...;
720, 0, 0, -720, -3991680, -547747200, -20074032000 ...;
Antidiagonal rows begin as:
1;
1, 1;
1, 1, 2;
1, 1, 0, 6;
1, 1, -1, 0, 24;
1, 1, -2, 0, 0, 120;
1, 1, -3, -6, 0, 0, 720;
1, 1, -4, -24, 24, 0, 0, 5040;
1, 1, -5, -60, 504, 120, 0, 0, 40320;
1, 1, -6, -120, 3360, 27720, -720, 0, 0, 362880;
1, 1, -7, -210, 13800, 702240, -3991680, -5040, 0, 0, 3628800;
MATHEMATICA
(* First program *)
b[n_, k_]:= If[k==n, 2, If[k==n-1 || k==n+1, -1, 0]];
M[d_]:= Table[b[n, k], {n, d}, {k, d}];
p[x_, n_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]];
f = Table[p[x, n], {n, 0, 20}];
T[n_, k_]:= If[k==0, n!, Product[f[[j]], {j, n}]/.x->(k+1)];
Table[T[k, n-k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 25 2021 *)
(* Second program *)
T[n_, k_]:= If[n==0, 1, If[k==0, n!, Product[(-1)^j*Simplify[ChebyshevU[j, x/2-1]], {j, 0, n-1}]/.x->(k+1)]];
Table[T[k, n-k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 25 2021 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (n==0): return 1
elif (k==0): return factorial(n)
else: return product( (-1)^j*chebyshev_U(j, (k-1)/2) for j in (0..n-1) )
flatten([[T(k, n-k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jun 25 2021
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 11 2009
EXTENSIONS
Edited by G. C. Greubel, Jun 25 2021
STATUS
approved