login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156599
Triangle T(n, k, m) = t(n, m)/(t(k, m)*t(n-k, m)), where t(n, k) = Product_{j=1..n} p(j, k+1), p(n, x) = Sum_{j=0..n} (-1)^j*A053122(n, j)*x^j, and m = 5, read by rows.
5
1, 1, 1, 1, -4, 1, 1, 15, 15, 1, 1, -56, 210, -56, 1, 1, 209, 2926, 2926, 209, 1, 1, -780, 40755, -152152, 40755, -780, 1, 1, 2911, 567645, 7909187, 7909187, 567645, 2911, 1, 1, -10864, 7906276, -411126352, 1534382278, -411126352, 7906276, -10864, 1, 1, 40545, 110120220, 21370664028, 297662820390, 297662820390, 21370664028, 110120220, 40545, 1
OFFSET
0,5
FORMULA
T(n, k, m) = t(n, m)/(t(k, m)*t(n-k, m)), where t(n, k) = Product_{j=1..n} p(j, k+1), p(n, x) = Sum_{j=0..n} (-1)^j*A053122(n, j)*x^j, and m = 5.
EXAMPLE
Triangle begins:
1;
1, 1;
1, -4, 1;
1, 15, 15, 1;
1, -56, 210, -56, 1;
1, 209, 2926, 2926, 209, 1;
1, -780, 40755, -152152, 40755, -780, 1;
1, 2911, 567645, 7909187, 7909187, 567645, 2911, 1;
MATHEMATICA
(* First program *)
b[n_, k_]:= If[k==n, 2, If[k==n-1 || k==n+1, -1, 0]];
M[d_]:= Table[b[n, k], {n, d}, {k, d}];
p[x_, n_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]];
f= Table[p[x, n], {n, 0, 20}];
t[n_, k_]:= If[k==0, n!, Product[f[[j]], {j, n}]/.x->(k+1)];
T[n_, k_, m_]:= If[n==0, 1, t[n, m]/(t[k, m]*t[n-k, m])];
Table[T[n, k, 5], {n, 0, 12}, {k, 0, n}]//TableForm (* modified by G. C. Greubel, May 23 2019; Jun 25 2021 *)
(* Second program *)
t[n_, k_]:= t[n, k]= If[n==0, 1, If[k==0, (n-1)!, Product[(-1)^j*Simplify[ChebyshevU[j, x/2 - 1]], {j, 0, n-1}]/.x->(k+1)]];
T[n_, k_, m_]:= T[n, k, m]= t[n, m]/(t[k, m]*t[n-k, m]);
Table[T[n, k, 5], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 25 2021 *)
PROG
(Sage)
@CachedFunction
def t(n, k):
if (n==0): return 1
elif (k==0): return factorial(n-1)
else: return product( (-1)^j*chebyshev_U(j, (k-1)/2) for j in (0..n-1) )
def T(n, k, m): return t(n, m)/(t(k, m)*t(n-k, m))
flatten([[T(n, k, 5) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 25 2021
CROSSREFS
Cf. A007318 (m=0), A034801 (m=4), this sequence (m=5), A156600 (m=6), A156601 (m=7), A156602 (m=8), A156603.
Cf. A053122.
Sequence in context: A157211 A176428 A116469 * A010320 A152571 A008304
KEYWORD
sign,tabl,less
AUTHOR
Roger L. Bagula, Feb 11 2009
EXTENSIONS
Edited by G. C. Greubel, May 23 2019; Jun 25 2021
STATUS
approved