login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034801 Triangle of Fibonomial coefficients (k=2). 8
1, 1, 1, 1, 3, 1, 1, 8, 8, 1, 1, 21, 56, 21, 1, 1, 55, 385, 385, 55, 1, 1, 144, 2640, 6930, 2640, 144, 1, 1, 377, 18096, 124410, 124410, 18096, 377, 1, 1, 987, 124033, 2232594, 5847270, 2232594, 124033, 987, 1, 1, 2584, 850136, 40062659, 274715376, 274715376, 40062659, 850136, 2584, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 88.

LINKS

G. C. Greubel, Rows n = 0..100 of triangle, flattened

C. Pita, On s-Fibonomials, J. Int. Seq. 14 (2011) # 11.3.7.

C. J. Pita Ruiz Velasco, Sums of Products of s-Fibonacci Polynomial Sequences, J. Int. Seq. 14 (2011) # 11.7.6.

FORMULA

Fibonomial coefficients formed from sequence F_3k [ 2, 8, 34, ... ].

T(n, k) = Product_{j=0..k-1} Fibonacci(2*(n-j)) / Product_{j=1..k} Fibonacci(2*j).

EXAMPLE

Triangle begins as:

  1;

  1,   1;

  1,   3,      1;

  1,   8,      8,       1;

  1,  21,     56,      21,       1;

  1,  55,    385,     385,      55,       1;

  1, 144,   2640,    6930,    2640,     144,      1;

  1, 377,  18096,  124410,  124410,   18096,    377,   1;

  1, 987, 124033, 2232594, 5847270, 2232594, 124033, 987, 1;

MAPLE

A034801 := proc(n, k)

    mul(combinat[fibonacci](2*n-2*j), j=0..k-1) /

    mul(combinat[fibonacci](2*j), j=1..k) ;

end proc: # R. J. Mathar, Sep 02 2017

MATHEMATICA

F[n_, k_, q_]:= Product[Fibonacci[q*(n-j+1)]/Fibonacci[q*j], {j, k}];

Table[F[n, k, 2], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 13 2019 *)

PROG

(PARI) F(n, k, q) = f=fibonacci; prod(j=1, k, f(q*(n-j+1))/f(q*j)); \\ G. C. Greubel, Nov 13 2019

(Sage)

def F(n, k, q):

    if (n==0 and k==0): return 1

    else: return product(fibonacci(q*(n-j+1))/fibonacci(q*j) for j in (1..k))

[[F(n, k, 2) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 13 2019

(GAP)

F:= function(n, k, q)

    if n=0 and k=0 then return 1;

    else return Product([1..k], j-> Fibonacci(q*(n-j+1))/Fibonacci(q*j));

    fi;

  end;

Flat(List([0..10], n-> List([0..n], k-> F(n, k, 2) ))); # G. C. Greubel, Nov 13 2019

CROSSREFS

Cf. A010048.

Sequence in context: A238688 A174117 A157210 * A331890 A102435 A340882

Adjacent sequences:  A034798 A034799 A034800 * A034802 A034803 A034804

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from James A. Sellers, Feb 09 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 17 19:37 EDT 2021. Contains 343070 sequences. (Running on oeis4.)