OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 1.
T(n, n-k, m) = T(n, k, m).
T(n, 1, 1) = A079583(n-1). - G. C. Greubel, Jan 10 2022
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 8, 8, 1;
1, 19, 42, 19, 1;
1, 42, 186, 186, 42, 1;
1, 89, 730, 1362, 730, 89, 1;
1, 184, 2640, 8540, 8540, 2640, 184, 1;
1, 375, 9030, 47810, 79952, 47810, 9030, 375, 1;
1, 758, 29722, 246530, 652460, 652460, 246530, 29722, 758, 1;
1, 1525, 95238, 1196806, 4796770, 7429760, 4796770, 1196806, 95238, 1525, 1;
MATHEMATICA
f[n_, k_]:= If[k<=Floor[n/2], k, n-k];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1, k-1, m] + (m*k+1)*T[n-1, k, m] - m*f[n, k]*T[n-2, k-1, m]];
Table[T[n, k, 1], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
PROG
(Sage)
def f(n, k): return k if (k <= n//2) else n-k
@CachedFunction
def T(n, k, m): # A157210
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1, k-1, m) + (m*k+1)*T(n-1, k, m) - m*f(n, k)*T(n-2, k-1, m)
flatten([[T(n, k, 1) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 25 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 10 2022
STATUS
approved