login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157210
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 1, read by rows.
23
1, 1, 1, 1, 3, 1, 1, 8, 8, 1, 1, 19, 42, 19, 1, 1, 42, 186, 186, 42, 1, 1, 89, 730, 1362, 730, 89, 1, 1, 184, 2640, 8540, 8540, 2640, 184, 1, 1, 375, 9030, 47810, 79952, 47810, 9030, 375, 1, 1, 758, 29722, 246530, 652460, 652460, 246530, 29722, 758, 1
OFFSET
0,5
FORMULA
T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 1.
T(n, n-k, m) = T(n, k, m).
T(n, 1, 1) = A079583(n-1). - G. C. Greubel, Jan 10 2022
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 8, 8, 1;
1, 19, 42, 19, 1;
1, 42, 186, 186, 42, 1;
1, 89, 730, 1362, 730, 89, 1;
1, 184, 2640, 8540, 8540, 2640, 184, 1;
1, 375, 9030, 47810, 79952, 47810, 9030, 375, 1;
1, 758, 29722, 246530, 652460, 652460, 246530, 29722, 758, 1;
1, 1525, 95238, 1196806, 4796770, 7429760, 4796770, 1196806, 95238, 1525, 1;
MATHEMATICA
f[n_, k_]:= If[k<=Floor[n/2], k, n-k];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1, k-1, m] + (m*k+1)*T[n-1, k, m] - m*f[n, k]*T[n-2, k-1, m]];
Table[T[n, k, 1], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
PROG
(Sage)
def f(n, k): return k if (k <= n//2) else n-k
@CachedFunction
def T(n, k, m): # A157210
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1, k-1, m) + (m*k+1)*T(n-1, k, m) - m*f(n, k)*T(n-2, k-1, m)
flatten([[T(n, k, 1) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 25 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 10 2022
STATUS
approved