OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 2.
T(n, n-k, 2) = T(n, k, 2).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 33, 33, 1;
1, 112, 394, 112, 1;
1, 353, 3150, 3150, 353, 1;
1, 1080, 20719, 51192, 20719, 1080, 1;
1, 3265, 122535, 620415, 620415, 122535, 3265, 1;
1, 9824, 681040, 6312360, 12805614, 6312360, 681040, 9824, 1;
1, 29505, 3643980, 57451300, 209503086, 209503086, 57451300, 3643980, 29505, 1;
MAPLE
A157148 := proc(n, k)
option remember;
if k < 0 or k> n then 0;
elif k = 0 or k = n then 1;
else (2*(n-k)+1)*procname(n-1, k-1) + (2*k+1)*procname(n-1, k) + 2*k*(n-k)*procname(n-2, k-1);
end if;
end proc:
seq(seq(A157148(n, k), k=0..n), n=0..10) ; # R. J. Mathar, Feb 06 2015
MATHEMATICA
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1, k-1, m] + (m*k+1)*T[n-1, k, m] + m*k*(n-k)*T[n-2, k-1, m]];
Table[T[n, k, 2], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
PROG
(Sage)
@CachedFunction
def T(n, k, m): # A157148
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1, k-1, m) + (m*k+1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m)
flatten([[T(n, k, 2) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 09 2022
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Feb 24 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 09 2022
STATUS
approved