login
A157149
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 3, read by rows.
23
1, 1, 1, 1, 11, 1, 1, 57, 57, 1, 1, 247, 930, 247, 1, 1, 1013, 10006, 10006, 1013, 1, 1, 4083, 89139, 225230, 89139, 4083, 1, 1, 16369, 719691, 3771323, 3771323, 719691, 16369, 1, 1, 65519, 5495836, 53239541, 108865438, 53239541, 5495836, 65519, 1
OFFSET
0,5
FORMULA
T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 3.
T(n, n-k, 3) = T(n, k, 3).
T(n, 1, 3) = A289255(n). - G. C. Greubel, Jan 09 2022
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 11, 1;
1, 57, 57, 1;
1, 247, 930, 247, 1;
1, 1013, 10006, 10006, 1013, 1;
1, 4083, 89139, 225230, 89139, 4083, 1;
1, 16369, 719691, 3771323, 3771323, 719691, 16369, 1;
1, 65519, 5495836, 53239541, 108865438, 53239541, 5495836, 65519, 1;
MAPLE
A157149 := proc(n, k)
option remember;
if k < 0 or k> n then 0;
elif k = 0 or k = n then 1;
else (3*(n-k)+1)*procname(n-1, k-1) + (3*k+1)*procname(n-1, k) + 3*k*(n-k)*procname(n-2, k-1);
end if;
end proc:
seq(seq(A157149(n, k), k=0..n), n=0..10) ; # R. J. Mathar, Feb 06 2015
MATHEMATICA
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1, k-1, m] + (m*k+1)*T[n-1, k, m] + m*k*(n-k)*T[n-2, k-1, m]];
Table[T[n, k, 3], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
PROG
(Sage)
@CachedFunction
def T(n, k, m): # A157149
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1, k-1, m) + (m*k+1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m)
flatten([[T(n, k, 3) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 09 2022
CROSSREFS
Cf. A007318 (m=0), A157147 (m=1), A157148 (m=2), this sequence (m=3), A157150 (m=4), A157151 (m=5).
Cf. A289255.
Sequence in context: A144440 A157209 A014469 * A342889 A166979 A022174
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Feb 24 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 09 2022
STATUS
approved