OFFSET
0,5
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
G. C. Greubel, Rows n=0..50 of triangle, flattened
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017
EXAMPLE
1 ;
1 1;
1 11 1;
1 111 111 1;
1 1111 11211 1111 1;
1 11111 1122211 1122211 11111 1;
1 111111 112232211 1123333211 112232211 111111 1;
1 1111111 11223332211 1123445443211 1123445443211 11223332211 1111111 1;
MAPLE
MATHEMATICA
a027878[n_]:=Times@@ Table[10^i - 1, {i, n}]; T[n_, m_]:=a027878[n]/( a027878[m] a027878[n - m]); Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten (* Indranil Ghosh, Jul 20 2017, after Maple code *)
Table[QBinomial[n, k, 10], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 10; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 28 2018 *)
PROG
(Python)
from operator import mul
def a027878(n): return 1 if n==0 else reduce(mul, [10**i - 1 for i in range(1, n + 1)])
def T(n, m): return a027878(n)/(a027878(m)*a027878(n - m))
for n in range(11): print([T(n, m) for m in range(n + 1)]) # Indranil Ghosh, Jul 20 2017, after Maple code
(PARI) {q=10; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1, k-1) + q^k*T(n-1, k))))};
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 28 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved