login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022173 Triangle of Gaussian binomial coefficients [ n,k ] for q = 9. 17
1, 1, 1, 1, 10, 1, 1, 91, 91, 1, 1, 820, 7462, 820, 1, 1, 7381, 605242, 605242, 7381, 1, 1, 66430, 49031983, 441826660, 49031983, 66430, 1, 1, 597871, 3971657053, 322140667123, 322140667123, 3971657053 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

LINKS

G. C. Greubel, Rows n=0..50 of triangle, flattened

R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.

Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.

FORMULA

T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017

EXAMPLE

1 ;

1 1;

1 10 1;

1 91 91 1;

1 820 7462 820 1;

1 7381 605242 605242 7381 1;

1 66430 49031983 441826660 49031983 66430 1;

1 597871 3971657053 322140667123 322140667123 3971657053 597871 1;

1 5380840 321704819164 234844517989720 2113887057661126 234844517989720 321704819164 5380840 1 ;

MAPLE

A027877 := proc(n)

    mul(9^i-1, i=1..n) ;

end proc:

A022173 := proc(n, m)

    A027877(n)/A027877(m)/A027877(n-m) ;

end proc: # R. J. Mathar, Jul 19 2017

MATHEMATICA

a027878[n_]:=Times@@ Table[9^i - 1, {i, n}]; T[n_, m_]:=a027878[n]/( a027878[m] a027878[n-m]); Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten (* Indranil Ghosh, Jul 20 2017, after Maple code *)

Table[QBinomial[n, k, 9], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 9; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten  (* G. C. Greubel, May 27 2018 *)

PROG

(Python)

from operator import mul

def a027878(n): return 1 if n==0 else reduce(mul, [9**i - 1 for i in xrange(1, n + 1)])

def T(n, m): return a027878(n)/(a027878(m)*a027878(n - m))

for n in xrange(11): print [T(n, m) for m in xrange(n + 1)] # Indranil Ghosh, Jul 20 2017, after Maple code

(PARI) {q=9; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1, k-1) + q^k*T(n-1, k))))};

for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 27 2018

CROSSREFS

Sequence in context: A166972 A160562 A176243 * A158117 A172378 A015124

Adjacent sequences:  A022170 A022171 A022172 * A022174 A022175 A022176

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 09:35 EST 2019. Contains 329791 sequences. (Running on oeis4.)