login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022173
Triangle of Gaussian binomial coefficients [ n,k ] for q = 9.
20
1, 1, 1, 1, 10, 1, 1, 91, 91, 1, 1, 820, 7462, 820, 1, 1, 7381, 605242, 605242, 7381, 1, 1, 66430, 49031983, 441826660, 49031983, 66430, 1, 1, 597871, 3971657053, 322140667123, 322140667123, 3971657053
OFFSET
0,5
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017
EXAMPLE
1 ;
1 1;
1 10 1;
1 91 91 1;
1 820 7462 820 1;
1 7381 605242 605242 7381 1;
1 66430 49031983 441826660 49031983 66430 1;
1 597871 3971657053 322140667123 322140667123 3971657053 597871 1;
1 5380840 321704819164 234844517989720 2113887057661126 234844517989720 321704819164 5380840 1 ;
MAPLE
A027877 := proc(n)
mul(9^i-1, i=1..n) ;
end proc:
A022173 := proc(n, m)
A027877(n)/A027877(m)/A027877(n-m) ;
end proc: # R. J. Mathar, Jul 19 2017
MATHEMATICA
a027878[n_]:=Times@@ Table[9^i - 1, {i, n}]; T[n_, m_]:=a027878[n]/( a027878[m] a027878[n-m]); Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten (* Indranil Ghosh, Jul 20 2017, after Maple code *)
Table[QBinomial[n, k, 9], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 9; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 27 2018 *)
PROG
(Python)
from operator import mul
def a027878(n): return 1 if n==0 else reduce(mul, [9**i - 1 for i in range(1, n + 1)])
def T(n, m): return a027878(n)/(a027878(m)*a027878(n - m))
for n in range(11): print([T(n, m) for m in range(n + 1)]) # Indranil Ghosh, Jul 20 2017, after Maple code
(PARI) {q=9; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1, k-1) + q^k*T(n-1, k))))};
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 27 2018
CROSSREFS
Sequence in context: A364071 A160562 A176243 * A158117 A172378 A015124
KEYWORD
nonn,tabl
STATUS
approved