login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172378
Second beta integer combination triangle of a Narayana type: a=3:f(n, a) = a*f(n - 1, a) + f(n - 2, a);c(n,a)=If[n == 0, 1, Product[f(i, a), {i, 1, n}]];w(n,m,q)=c(n - 1, q)*c(n, q)/(c(m - 1, q)*c(n - m, q)*c(m - 1, q)*c(n - m + 1, q)*f(m, q))
0
1, 1, 1, 1, 10, 1, 1, 110, 110, 1, 1, 1199, 13189, 1199, 1, 1, 13080, 1568292, 1568292, 13080, 1, 1, 142680, 186625440, 2034217296, 186625440, 142680, 1, 1, 1556401, 22206729468, 2640582013104, 2640582013104, 22206729468, 1556401, 1, 1
OFFSET
1,5
COMMENTS
Row sums are:
{1, 2, 12, 222, 15589, 3162746, 2407753538, 5325580597948, 44250590408026536,
1067713385571585752220,...}
FORMULA
a=3:
f(n, a) = a*f(n - 1, a) + f(n - 2, a);
c(n,a)=If[n == 0, 1, Product[f(i, a), {i, 1, n}]];
w(n,m,q)=c(n - 1, q)*c(n, q)/(c(m - 1, q)*c(n - m, q)*c(m - 1, q)*c(n - m + 1, q)*f(m, q))
EXAMPLE
{1},
{1, 1},
{1, 10, 1},
{1, 110, 110, 1},
{1, 1199, 13189, 1199, 1},
{1, 13080, 1568292, 1568292, 13080, 1},
{1, 142680, 186625440, 2034217296, 186625440, 142680, 1},
{1, 1556401, 22206729468, 2640582013104, 2640582013104, 22206729468, 1556401, 1},
{1, 16977730, 2642415594973, 3427453246279524, 37390399050322080, 3427453246279524, 2642415594973, 16977730, 1},
{1, 185198630, 314425233650990, 4448834073451222609, 529407544286922803880, 529407544286922803880, 4448834073451222609, 314425233650990, 185198630, 1}
MATHEMATICA
Clear[t, n, m, c, q, w, f, a] f[0, a_] := 0; f[1, a_] := 1;
f[n_, a_] := f[n, a] = a*f[n - 1, a] + f[n - 2, a];
c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
w[n_, m_, q_] := c[n - 1, q]*c[n, q]/(c[m - 1, q]*c[n - m, q]*c[m - 1, q]*c[n - m + 1, q]*f[m, q]);
Table[Table[Table[w[n, m, q], {m, 1, n}], {n, 1, 10}], {q, 1, 12}];
Table[Flatten[Table[Table[w[n, m, q], {m, 1, n}], {n, 1, 10}]], {q, 1, 12}]
CROSSREFS
Sequence in context: A176243 A022173 A158117 * A015124 A156767 A365025
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, Feb 01 2010
STATUS
approved