login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364071
Triangle read by rows: T(n, k) = Sum_{d=0..n-k} binomial(n, d)*StirlingS2(n-d, k)*8^(n-d-k), with 0 <= k <= n.
2
1, 1, 1, 1, 10, 1, 1, 91, 27, 1, 1, 820, 550, 52, 1, 1, 7381, 10170, 1850, 85, 1, 1, 66430, 180271, 56420, 4655, 126, 1, 1, 597871, 3131037, 1590771, 210035, 9821, 175, 1, 1, 5380840, 53825500, 42900312, 8521926, 612696, 18396, 232, 1, 1, 48427561, 920414340, 1126333300, 324123870, 33642462, 1514100, 31620, 297, 1
OFFSET
0,5
COMMENTS
T(n, k) is the number of 8-subgroups of R^n which have dimension k, where R^n is a near-vector space over a proper nearfield R.
LINKS
Prudence Djagba and Jan Hązła, Combinatorics of subgroups of Beidleman near-vector spaces, arXiv:2306.16421 [math.RA], 2023. See pp. 7-8.
EXAMPLE
The triangle begins:
1;
1, 1;
1, 10, 1;
1, 91, 27, 1;
1, 820, 550, 52, 1;
1, 7381, 10170, 1850, 85, 1;
1, 66430, 180271, 56420, 4655, 126, 1;
1, 597871, 3131037, 1590771, 210035, 9821, 175, 1;
...
MATHEMATICA
T[n_, k_]:=Sum[Binomial[n, d]StirlingS2[n-d, k]8^(n-d-k), {d, 0, n-k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}]//Flatten
CROSSREFS
Cf. A000012 (k=0), A002452 (k=1), A003580 (row sums), A364072, A364073.
Sequence in context: A129274 A176021 A166972 * A160562 A176243 A022173
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Jul 04 2023
STATUS
approved