OFFSET
0,5
COMMENTS
T(n, k) is the number of 8-subgroups of R^n which have dimension k, where R^n is a near-vector space over a proper nearfield R.
LINKS
Prudence Djagba and Jan Hązła, Combinatorics of subgroups of Beidleman near-vector spaces, arXiv:2306.16421 [math.RA], 2023. See pp. 7-8.
EXAMPLE
The triangle begins:
1;
1, 1;
1, 10, 1;
1, 91, 27, 1;
1, 820, 550, 52, 1;
1, 7381, 10170, 1850, 85, 1;
1, 66430, 180271, 56420, 4655, 126, 1;
1, 597871, 3131037, 1590771, 210035, 9821, 175, 1;
...
MATHEMATICA
T[n_, k_]:=Sum[Binomial[n, d]StirlingS2[n-d, k]8^(n-d-k), {d, 0, n-k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}]//Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Jul 04 2023
STATUS
approved